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Abstract 

Industrial wastewater collection involves the systematic gathering, transportation, and disposal of waste generated by 

industrial activities. This process is crucial for maintaining environmental health and safety, as industrial wastewater may 

contain hazardous materials that require special management. Effective waste collection strategies not only help reduce 

pollution but also contribute to the recycling and reuse of materials, thereby conserving resources. Advanced technologies 

and adherence to regulations play key roles in ensuring the efficient and sustainable management of industrial wastewater. 

Considering the role of closed-loop supply chains in industrial wastewater collection, this paper presents a bi-objective 

mathematical model aimed at minimizing both the costs associated with surface wastewater collection and the environmental 

pollution from waste discharge. The model is solved using the multi-objective Grey Wolf Optimization algorithm. The 

results show that the model extends the network by including more vehicles and increasing the distances between locations. 

This optimal collection model ensures that wastewater is gathered from candidate sites by the vehicles within the network. 

Additionally, sensitivity analysis reveals that the most influential parameters on the model's objectives are the transportation 

cost per unit distance, the penalty for vehicle usage, and the revenue per kilogram of treated wastewater. 
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algorithm. 
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1. Introduction 

One of the most significant topics in recent decades has 

been sustainable supply chains, as the environment has 

increasingly become polluted due to the operations of 

companies and factories. The destruction of the environment 

is growing day by day due to carbon emissions and products 

produced by factories. The adoption of green supply chains 

is often driven by two common variables: the reduction of 

pollutants and the cost of a sustainable supply chain [1]. 

With the intensification and expansion of the competitive 

landscape in today’s world, supply chain management has 

become one of the key challenges for business enterprises, 

influencing all organizational activities aimed at product 

production, quality improvement, cost reduction, and the 

provision of customer services. On the other hand, 

environmental issues have previously received attention in 

developed countries, and government regulations, along 

with customer pressure to comply with them and consider 

environmentally friendly products, have increased. Supply 

chain design models have generally worked to minimize 

costs without considering the level of carbon emissions. 

However, recent studies have focused on environmentally 

friendly production, considering carbon emissions and 

optimizing the overall cost [2-5]. Across the supply chain, 

the process of considering environmental criteria and 

considerations involves greening the supply chain. The 

integration of supply chain management with environmental 

requirements across all product design processes, selection 

and procurement of raw materials, manufacturing, 

distribution and transportation processes, delivery to 

customers, and ultimately, post-consumption recycling and 

reuse management, aims to improve energy and resource 

consumption efficiency while enhancing overall supply 

chain performance [6]. 

Closed-loop supply chains (CLSC) represent an 

alternative logistics approach for addressing environmental 

degradation and resource shortages. In CLSC systems, 

materials are controlled, greenhouse gas emissions and 

waste are reduced, and production processes become cost-

effective [7]. Closed-loop supply chain management 

(CLSC) integrates forward and reverse logistics to create a 

sustainable and efficient system. This approach aims to 

reduce waste and maximize resource use by incorporating 

processes such as recycling, remanufacturing, and reuse of 

materials. Recent studies have highlighted the importance of 

CLSC in addressing environmental and economic 

challenges [8]. For instance, a comprehensive review of 

CLSC literature underscores the role of optimization 

techniques in enhancing sustainability and resource 

efficiency. Researchers have identified key trends and 

challenges, such as the need for better integration of 

recovery options and the development of stronger models to 

manage the complexities of CLSC networks [9]. Another 

important aspect of CLSC is its contribution to the circular 

economy. By closing the loop, companies can reduce their 

environmental impact and improve their economic 

performance. Studies have shown that effective CLSC 

management can lead to significant cost savings and 

improved competitiveness. Analyzing CLSC models 

indicates that integrating forward and reverse supply chains 

can optimize both economic and environmental outcomes. 

This dual focus on sustainability and profitability makes 

CLSC a vital strategy for modern supply chain management 

[10]. 

The components of reverse supply chains include 

customers, collection centers, and recycling or disposal 

facilities for used products. Returned products are collected, 

inspected, and sent to the appropriate centers for recycling 

or disposal. Key decisions in this network include the 

location of recycling and disposal centers and the flow of 

returned materials. Integration in CLSC design involves 

simultaneous decision-making for both strategic and 

operational decisions for forward and reverse supply chains 

[11]. On the other hand, a critical issue for many companies 

is the management of industrial waste, including its 

treatment, recycling, or disposal. Effective water and 

wastewater management is essential for public health and 

economic development, but it remains a significant 

challenge in many low- and middle-income countries [12]. 

Consequently, in many countries, the focus on implementing 

sustainable development requirements within the supply 

chain has led to significant attention to the allocation and 

capacity-building of industrial wastewater recycling centers 

to optimize resource use and increase sustainability. By 

strategically locating these centers, industries can 

significantly reduce transportation costs and related carbon 

emissions. This approach ensures that wastewater is treated 

near its source, minimizing the need for long-distance 

transportation. Furthermore, by maximizing the capacity of 

these centers, industries can increase the volume of recycled 

and reused water, thereby reducing their dependence on 

fresh water resources. This not only helps in water 

conservation but also assists companies in complying with 

regulations and achieving sustainability goals [13]. 

Therefore, this paper aims to propose an optimized model 
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for industrial waste recycling centers in reverse supply 

chains of industrial companies, using metaheuristic 

algorithms to solve the multi-objective and NP-hard 

problem. Thus, the main contributions of this paper are as 

follows: 

- Reduction in industrial wastewater transportation 

- Increased production of usable water from recycling 

- Enhanced recycling rates of industrial wastewater 

pollutants into organic and mineral materials 

required in industries and agriculture. 

2. Methodology 

This research presents an intelligent model for the closed-

loop supply chain of industrial wastewater collection and 

recycling, based on the work of Kabir et al. (2021). Kabir 

and colleagues proposed a mixed-integer linear 

programming model for a multi-stage, multi-product, and 

multi-period reverse supply chain network, aiming to 

maximize profit and optimize logistics. They introduced two 

models: the first minimizes the travel distance and water 

collection vehicle costs, while the second maximizes the 

profit from urban water collection, deducting the costs of the 

first model [14]. The present study adapts the second model 

for the routing of industrial wastewater collection vehicles, 

pursuing two simultaneous objectives: maximizing profit 

and minimizing pollution. This problem involves optimizing 

the collection of industrial wastewater using a set of n 

potential locations, v homogeneous vehicles, and one depot. 

The system is modeled as an undirected complete graph with 

(n+1) nodes, where each node represents a wastewater 

location with a maximum capacity of (Eᵢ). The vehicle 

transportation cost per unit distance is denoted by C, and the 

revenue generated from wastewater collection is represented 

by R. Each vehicle has a fixed capacity Q in kilograms. 

Filling sensors at each location send the wastewater volume 

to the collection center, which is converted to kilograms 

based on the wastewater density B in kilograms per cubic 

meter. The proposed method aims to maximize profit from 

wastewater collection while minimizing pollution, 

considering road gradient and truck load. 

The wastewater locations along with the waste collection 

center (node indices): i, j ∈ I 

Vehicle index: v ∈ F 

The number of wastewater locations is n, along with the 

actual industrial wastewater collection center (where 

vehicles start) and a virtual surface wastewater collection 

center, forming the nodes of the model. The actual surface 

wastewater collection center is node 0, and the virtual 

surface wastewater collection center is node n+1. After 

reaching the virtual wastewater collection center, 

wastewater collection vehicles follow the same route back to 

the actual depot. 

 Transportation cost per unit distance (USD): C 

 Revenue per kilogram of treated wastewater 

collected (USD): R 

 Penalty for vehicle usage (USD): P 

 Capacity of wastewater collection vehicles (kg): Q 

 Wastewater density (kg/m³): B 

 Distance between two nodes i and j: dᵢⱼ 

 Amount of wastewater at location i in kilograms 

(calculated from sensor data in cubic meters and 

wastewater density): Sᵢ 

 Forecasted daily accumulation rate of wastewater 

at location i: aᵢ 

 Wastewater location capacity i: Eᵢ 

 Total wastewater considered, based on the 

collected wastewater and the forecasted rate 

exceeding capacity at location i, Sᵢ + aᵢ > Eᵢ: H 

Considering the service level provided, the percentage of 

wastewater tanks that can overflow: θ 

Maximum allowed overflow threshold: T_max 

Effect of road gradient: G 

Effect of truck load: L 

Road gradient on the edge between two nodes i and j: θᵢⱼ 

Pollution produced per unit distance traveled by the vehicle: 

Pol 

 3.3 Decision Variables 

 Binary variable (0 or 1) indicating whether vehicle 

v visits the edge (i, j): xᵢⱼᵛ 

 Binary variable indicating whether waste bin i is 

visited: gᵢ 

 Amount of load carried by vehicle v when visiting 

node j: yᵛʲ 

 Integer variable for the number of vehicles used: k 

In the model proposed by Kabir et al. (2021), after routing 

the vehicles, it is not specified which routes each industrial 

wastewater collection vehicle has taken [14]. In fact, there is 

no record of the routes traveled by the wastewater collection 

vehicles. In the present study, by modifying the decision 

variables, this issue has been addressed. The decision 

variable xᵢⱼᵛ is defined as a three-dimensional variable, 

whereas in the work of Kabir et al., it was defined as a two-

dimensional variable. This modification indicates whether a 

vehicle passed from node i to node j, and in our research, the 
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vehicle index has been added to specify which collection 

vehicle passed from node i to node j. Additionally, a 

constraint has been applied that only one vehicle should pass 

from node i to node j for wastewater collection. Our 

proposed model is formulated as follows. 

1)  

\{0, 1} ,( )

( )i i ijv ij

i I n v F i I j I j i

Max P R S g C x d k
     

     
 

2)  

,( )

pollution= . . .(1 ).ijv ij ij vj

v F i I j I j i

Min x d Pol h y 
   

 
 

3)  

\{0, 1}: i i i

i

i I n S a E

g H n
   
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,( )
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i I j I i j

x s Q v F
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7)  

{0,1} , , ,ijvx i j I i j v F    
 

8)  

{0,1} \{0, 1}ig i I n   
 

9) 

k ∈ 𝑁 

 

Equation (1) represents the first objective function of the 

model, where the profit from collecting industrial 

wastewater is maximized. This objective function is derived 

from the revenue minus transportation costs. Equation (2) 

represents the second objective function of the model, where 

the pollution produced by the collection vehicles is 

minimized. In this objective, the distance traveled by 

vehicles is multiplied by the road gradient, the current load 

of the wastewater collection vehicle, and the pollution rate 

per unit distance. The road gradient is a numerical value 

between 0 and 1 and is adjusted based on the impact factor. 

The vehicle load is also adjusted by multiplying with the 

load impact factor to reflect the effect of vehicle load on the 

level of pollution. 

Constraint (3) allows a percentage of the total wastewater 

locations to overflow based on the service level. Constraint 

(4) indicates that if a location exceeds the permissible 

overflow threshold, it must be collected by the designated 

vehicles. Constraint (5) specifies that the total number of 

incoming edges to a wastewater location is 1 if the location 

is collected, and 0 if not. Constraint (6) ensures that the total 

load collected by each vehicle does not exceed its capacity. 

Constraint (7) refers to the binary nature of the decision 

variables. Constraint (8) ensures that a specific decision 

variable is binary. Constraint (9) enforces the use of integer 

variables. 

 

 

 

3. Findings and Results 
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This algorithm, like the single-objective Grey Wolf 

Optimizer (GWO), begins with an initial population P that is 

randomly generated. In the next step, the produced 

population is evaluated based on the defined objective 

functions. In the proposed model, there is one minimization 

objective and one maximization objective. After dividing the 

population into different categories using the Non-

Dominated Sorting process, a control parameter called the 

"wolf position" is calculated to identify the location of the 

prey. This parameter is calculated for each member in every 

group and reflects the proximity of alpha, beta, and gamma 

wolves to the target prey. A larger value of this parameter 

leads to divergence and a broader range in the population set. 

In this algorithm, a number of solutions from each wolf 

population P_E are selected randomly using vector c. In the 

random selection method, solutions are chosen randomly 

from the population, and then a comparison is made between 

these two solutions. The better one is ultimately selected. 

The selection criteria in the MOGWO algorithm primarily 

depend on the distance between the wolves for prey hunting, 

and secondarily on the distance of the prey. The smaller the 

distance between the wolves for hunting and the lesser the 

prey distance, the more optimal the solution is. By repeating 

the random selection operator on each group of wolves, a set 

of wolves for hunting is chosen from the population. It 

should be noted that none of the solutions on the Pareto front 

are considered superior to others, and depending on the 

situation, each can be regarded as an optimal decision. The 

general approach of this algorithm is shown in Figure 1 

below. 

 

Figure 1. Mechanism of the MOGWO algorithm 

To implement the MOGWO algorithm with the goal of 

finding the best solutions, the optimal input parameters are 

searched. To achieve this, the Taguchi method is applied. In 

this section, the Taguchi method is fully presented to adjust 

the parameters of the MOGWO algorithm. The Taguchi 

method is the most well-known parameter optimization 

method using experimental design and response surface 

methodology. When the number of parameters is large, 

numerous experiments must be conducted to find the optimal 

solution, and due to the need for many experiments, methods 

such as Taguchi or trial and error are used. The Taguchi 

method provides a systematic, simple, and efficient 

approach to optimize the parameters of any algorithm using 

a limited set of experiments. The results of these experiments 

are valid for the entire experimental region created by the 

factors and their levels. Table 1 shows the main parameters 

of the MOGWO algorithm, which are determined using the 

Taguchi method at three levels. 

Table 1. MOGWO Parameters Adjusted According to Taguchi Levels 

Level 3 Level 2 Level 1 Parameter 

2 1 0.5 Scale Factor (SF) 

50 40 30 Population Size (np) 

150 100 70 Number of Iterations (niter) 
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In Table 2, the Taguchi experiments for determining the 

optimal parameters of MOGWO are shown. 

Table 2. Taguchi Parameter Settings for MOGWO 

R5 R4 R3 R2 R1 niter np SF Test Number 

0.741 0.748 0.698 0.635 0.658 70 30 0.5 1 

0.635 0.815 0.704 1.01 0.968 100 40 0.5 2 

0.787 0.810 0.801 1.487 1.748 150 50 0.5 3 

0.718 0.719 0.684 0.898 0.748 70 30 1 4 

0.710 0.801 0.810 1.315 1.42 100 40 1 5 

0.698 0.863 0.862 1.101 1.102 150 50 1 6 

0.653 0.687 0.635 1.035 1.245 70 30 2 7 

0.635 0.631 0.674 0.814 0.947 100 40 2 8 

0.721 0.719 0.749 1.169 1.25 150 50 2 9 

Finally, Table 3 presents the average response levels for 

the parameters of the MOGWO algorithm. 

Table 3. Taguchi Response Levels for MOGWO Parameter Adjustment 

niter np SF Level 

0.8649 0.8759 1.2635 1 

1.0787 1.1215 1.1069 2 

1.3165 1.4635 1.0469 3 

 

The results show that the optimal value for SF is at level 

3 (2), the optimal value for np is at level 1 (30), and the 

optimal value for niter is at level 1 (70). Now, using these 

initial values, the proposed model will be solved using the 

MOGWO algorithm. 

Now, with the wolf population set to 10 and the number 

of iterations set to 300, we present the results obtained for 

both objective functions. On the other hand, since the 

proposed model has different levels based on 7 potential 

wastewater sites and 6 wastewater collection vehicles, the 

wastewater collection flow is determined based on the 

number of discharge and collection locations. Table 4 

presents the demand levels for each of the five customers. 

Table 4. Customer Demand Levels 

Candidate Wastewater Location 1 2 3 4 5 6 7 

Wastewater Production Capacity (kg/m³) 150 180 365 410 95 263 315 

 

According to Table 4, it is clear that the first wastewater 

location has a production capacity of 150 kg/m³, the second 

location has a production capacity of 180 kg/m³, and so on. 

It is also important to note that the maximum time allowed 

for transferring wastewater from each candidate location, 

which does not cause dissatisfaction, is considered to be 100 

hours. Another point to consider is that since the initial 

values of the model are randomly assigned in solving the 

problem, it may result in an infeasible solution, but the 

algorithm will immediately act to overcome this and reach a 

feasible solution. This process is considered during 300 

iterations of the algorithm. 

Based on this, Table 5 presents the results obtained from 

solving the problem with the MOGWO algorithm for both 

defined objectives. 

Table 5. Results from Solving the Problem with the MOGWO Algorithm 

Objective Function Cost Objective (Toman) Pollutant Emission Objective (PPM) 

Value 12,141,035 12,524 
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As shown in Table 5, for the proposed model with the 

given numerical example, the optimal results have been 

achieved. 

Table 6 shows the wastewater transfer values by the 

wastewater trucks from the candidate wastewater locations 

to the treatment facility. 

Table 6. Industrial Wastewater Transfer by Trucks from Candidate Locations to Treatment Facility 

Truck 1 Truck 2 Truck 3 Truck 4 Truck 5 Truck 6 

25 0 80 0 45 0 

0 65 46 4 50 15 

0 0 50 65 224 26 

150 89 0 71 100 0 

16 11 10 5 49 5 

197 50 13 0 3 0 

150 109 41  5 0 

 

From Table 6, it is evident that Truck 1 receives all 150 

kg/m³ of its wastewater from Trucks 1, 3, and 5, or that the 

fifth candidate location used all the trucks for transferring 95 

kg/m³ of its wastewater. The total of each row in this table 

corresponds to the collection capacity of wastewater from 

the candidate wastewater locations, all of which are 

transferred by the wastewater trucks. 

One of the topics that can provide valuable insights for 

solving problems is sensitivity analysis of the model's 

parameters. In other words, sensitivity analysis determines 

how much a dependent variable will change when the value 

of an independent variable is altered, assuming all other 

variables remain constant in a specific, defined situation. In 

this problem, we modify the parameters of the model to 

observe how increasing or decreasing each parameter 

impacts the cost and the final pollutant emission of the 

model. The results of the sensitivity analysis for each 

parameter are presented in the tables below. 

Table 7. Sensitivity Analysis on Vehicle Transportation Cost 

Row Vehicle Transportation Cost (C) Cost (USD) Pollutant Emission (PPM) 

1 18000 11,095,253 15,296 

2 20000 12,536,658 29,854 

3 100000 152,652,541 162,352 

4 200000 349,455,260 452,533 

Table 8. Sensitivity Analysis on Revenue per Kilogram of Treated Wastewater Collected 

Row Revenue per Kilogram of Collected Treated Wastewater (R) Cost (USD) Pollutant Emission (PPM) 

1 80,000 115,823,252 18,665 

2 100,000 152,644,287 35,692 

3 800,000 253,310,249 212,749 

4 170,000 405,331,207 603,521 

Table 9. Sensitivity Analysis on Penalty for Vehicle Usage 

Row Penalty for Vehicle Usage (Ω) Cost (USD) Pollutant Emission (PPM) 

1 28,000 118,212,748 19,224 

2 45,000 154,821,049 39,326 

3 360,000 254,526,411 236,359 

4 750,000 421,244,512 652,415 

Table 10. Sensitivity Analysis on the Capacity of Wastewater Collection Trucks 

Row Capacity of Wastewater Collection Trucks (Q) Cost (USD) Pollutant Emission (PPM) 

1 7,500 11,025,315 15,216 

2 24,000 11,233,657 21,042 

3 190,000 119,524,102 182,523 

4 380,000 210,425,573 223,024 
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Table 11. Sensitivity Analysis on Wastewater Density 

Row Wastewater Density (B) Cost (USD) Pollutant Emission (PPM) 

1 210 11,036,985 12,963 

2 400 11,454,255 15,342 

3 2,000 121,004,635 115,241 

4 4,000 229,305,421 186,352 

Table 12. Sensitivity Analysis on the Number of Candidate Wastewater Locations 

Row Distance Between Two Nodes (dij) Cost (USD) Pollutant Emission (PPM) 

1 6 10,998,524 12,052 

2 8 11,031,524 13,635 

3 25 154,215,259 98,254 

4 50 197,487,754 123,635 

Table 13. Sensitivity Analysis on the Amount of Wastewater at the Specified Location 

Row Amount of Wastewater at the Specified Location (Si) Cost (USD) Pollutant Emission (PPM) 

1 5 11,563,598 11,896 

2 10 12,541,457 12,086 

3 50 16,052,418 101,256 

4 100 20,053,625 153,628 

 

4. Discussion and Conclusion 

This paper presents an intelligent model for the planning 

and investment of urban infrastructure for the collection of 

surface wastewater and its impact on pollutant emissions. 

Based on this, after reviewing the literature and presenting 

the research background, a bi-objective model was proposed 

that includes investment costs and pollutant emissions. In 

this study, after collecting data for modeling and considering 

the assumptions of the problem, we were able to determine 

the reduction in costs for surface wastewater collection and 

the decrease in pollutant emissions to the environment by 

identifying the optimal routes for wastewater collection 

vehicles. Additionally, due to the NP-Hard nature of the 

problem, a multi-objective Grey Wolf Optimization 

(MOGWO) algorithm was used to minimize both objectives 

under various scenarios and conditions. The results showed 

that the proposed model can effectively address the problem 

from different perspectives, including increasing the number 

of wastewater collection vehicles, the number of candidate 

collection locations, the accumulation of wastewater at the 

locations, the number of vehicles in the network, and the 

distances between candidate wastewater locations, ensuring 

that all accumulated wastewater at candidate locations is 

collected by the network’s vehicles. Furthermore, sensitivity 

analysis on the main model parameters revealed that among 

all the parameters, the cost of vehicle transportation per unit 

of distance traveled, the penalty for using vehicles, and the 

revenue per kilogram of treated wastewater collected have 

the most significant impact on the objective functions. 
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