
Management Strategies and Engineering Sciences 2024; 6(5):138-151

© 2024 The author(s). Published By: The Research Department of Economics and Management of Tomorrow's Innovators. This is an open

access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

Review Article

A Unified Framework for High-Speed, Secure SDN: A Data

Plane Approach

Seyyed Reza Tabatabaei Manesh1 , Abbas Manavi Nezhad2 *

1.PhD, Department of Strategic Management, National Defense University, Tehran, Iran.

2. MA, Department of Electrical Engineering, Aalto University, Espoo, Finland (Corresponding author).

* Corresponding author email address: abbas.manavi.n@gmail.com

Received: 2024-07-11 Reviewed: 2024-08-25 Revised: 2024-09-12 Accepted: 2024-09-29 Published: 2025-01-28

Abstract

The paper presents a scalable, software-centric architecture for secure, high-performance networking in the SDN

environment. Our approach merges robust security with near line-rate throughput by integrating high-speed packet

processing capabilities with optimized cryptographic operations into one cohesive SDN framework. At the heart of the

architecture is the Data Plane Development Kit, which, through user-space processing, zero-copy buffering, advanced

memory management, introduces low latency with reduced intruptions for packet handling. It integrates IPsec in such a way

as to provide data confidentiality and integrity at the IP layer. The architecture takes advantage of vector packet processing

to flexibly manipulate packets, adapt routing decisions on the fly, and make changes according to evolving network

requirements. This forms one cohesive system that ties security with speed, giving operators agility to scale services, enforce

policies, and protect sensitive data with software-driven efficiencies and minimal reliance on specialty hardware.

Keywords: Security Improvement, High Throughput, Software Defined Network (SDN), Data Plane Development Kit

(DPDK), Vector Packet Processing (VPP).

How to cite this article:
Tabatabaei Manesh R , Manavi Nezhad A. (2024). A Unified Framework for High-Speed, Secure SDN: A Data Plane Approach.

Management Strategies and Engineering Sciences, 6(5), 138-151.

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0009-0007-0203-166X
https://orcid.org/0009-0000-5987-5176

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

139

1. Introduction

SDN* provides a paradigm shift in managing the network

by separating the control plane from the data plane. This can

enable the programmability of networks in a centralized and

dynamic manner. Traditional architectures have often led to

inflexibility, vendor lock-in, and the inability of rapid

adaptation against evolving requirements. In contrast, the

abstraction of the control plane in SDN offers a holistic view

of the network while automating tasks that include policy

enforcement, traffic engineering, and orchestrated

automation. That essential redesign not only operationalizes

the simplicity of networks but also seamlessly integrates new

services and technologies.

Despite these advantages, the SDN environment brings in

different kinds of security challenges. Unauthorized access

to the centralized SDN controller or interception of control

messages would risk network policies and data integrity and

potentially enable malicious activities [1, 2]. As networks

continue to evolve and scale, robust security measures must

be seamlessly integrated without degrading performance.

IPSec† is a widely adopted suite of protocols that provides

confidentiality, integrity, and authentication at the IP layer.

Its integration into SDN can enhance the security of the

control and data channels in a way that only authorized

parties can modify or access critical state information [3, 4].

However, most traditional IPsec gateways rely on the kernel-

based Linux protocol stack, entailing multiple data copies

and synchronization overhead. This leads to latency and

throughput penalties-unacceptable in today's high-speed

networking scenarios [5].

These performance bottlenecks are taken care of by the

Data Plane Development Kit (DPDK), which processes the

packets completely in user space and bypasses the kernel

altogether. DPDK achieves faster packet processing by

exploiting NUMA‡-awareness, huge pages, zero-copy

optimizations, and hardware offloading. By accelerating

packet handling, DPDK reduces the performance costs

caused by IPsec overheads [6]. This synergy of SDN, IPsec,

and DPDK forms a secure high-throughput networking

foundation.

To further enhance performance and flexibility, Vector

Packet Processor (VPP) can be integrated as a modular

dataplane engine. This realizes advanced packet

manipulation, routing, and switching functionalities without

sacrificing the line-rate performance. The SDN, IPsec,

* Software – Defined Networking
† Internet Protocol Security

DPDK, and VPP together provide the full, secure, effective

environment for modern network operation.

2. Literature Review

Software-defined networking (SDN) has revolutionized

network management, offering unprecedented flexibility

and programmability. However, achieving optimal

performance and robust security in SDN environments is a

focal point for research and development.

Several studies have addressed the performance

limitations of older SDN architectures. One of the areas of

focus in SDN research is increasing network speed through

the integration of specialized data plane processing

techniques. For example, the use of the Data Plane

Development Kit (DPDK) has attracted considerable

attention due to its ability to speed up packet processing by

bypassing the operating system kernel and executing data

plane tasks directly in user space. Several studies have

shown the effectiveness of DPDK in improving packet

processing efficiency and reducing latency in SDN

environments. [7, 8] Also, in [9], the authors investigated the

effect of using programmable data planes to speed up packet

processing, and in [10], the authors investigated the

improvement of packet processing efficiency by using

hardware techniques such as SmartNIC.

In other researches, load balancing algorithms suitable for

SDN environments have also been investigated. In [11-13],

machine learning-based approaches for load balancing and

optimization of packet processing and routing based on

various network criteria and application requirements have

been reviewed. Their findings show improved network

utilization and reduced congestion compared to traditional

load balancing methods.

A result of this research shows that focusing only on one

part of the entire packet processing process, such as network

controls or traffic load balancing, does not have the ability

to create sufficient efficiency to manage the increasing

traffic load of today's networks.

SDN's centralized control plane presents opportunities

and challenges for security. In parallel, it has become

necessary to ensure strong security mechanisms in SDN

networks to protect against a wide range of cyber threats. In

[14, 15], the authors have investigated the types of attacks in

SDN networks and proposed solutions for them such as

Avant-Guard and VAVE (Virtual source Address Validation

‡ Non-Uniform Memory Access

Tabatabaei Manesh et.al

140

Edge) or the use of SSL* encryption and entropy analyses.

The result of this research shows that each of the solutions

can provide protection against a specific attack and are not

able to provide a general and integrated protection solution,

and the parallel use of several solutions at the same time will

create a lot of overheads in packet processing and routing in

the network.

In [15], the authors have provided a solution for the

integrity and authentication of the entire network traffic by

implementing IPSec in SDN, which results in reducing the

risk of unauthorized access and data manipulation.

In summary, the literature review shows ongoing efforts

in the research community to increase SDN network speed

and security through various techniques. While separate

studies have investigated the benefits of DPDK and IPsec in

isolation, there is a growing interest in exploring the

combined use of solutions and technologies to exploit their

synergy together in speed and security in SDN networks. .

The integration of IPsec into the DPDK-based packet

processing path, along with the use of VPP for optimal

routing, provides a promising approach to achieve high-

performance and secure SDN deployment. However, further

research is needed to explore the practical implications,

performance trade-offs, and deployment challenges

associated with such an integrated solution.

3. Proposed Technologies

3.1. Data Plane Development Kit (DPDK)

DPDK is a set of libraries and drivers designed for high-

performance packet processing in user space. Key design

goals include minimizing CPU overhead, bypassing

conventional kernel-based network stacks, and ensuring

deterministic packet processing latency. DPDK implements

memory management mechanisms that facilitate low-

latency and zero-copy packet handling. The underlying

memory architecture relies on several key components:

a. Huge Pages and Physical Address Contiguity:

By using huge pages (commonly 2MB or 1GB), DPDK

ensures large contiguous memory segments, reducing the

Translation Lookaside Buffer (TLB) overhead and

minimizing page walks. The large contiguous memory areas

help maintain a stable memory mapping and lower the CPU

instruction overhead for address translation. Evidence based

evaluations have shown that fewer TLB misses translate

directly into improved packet throughput [1, 15].

Formally, the number of pages 𝑁𝑝 required for a memory

size M given a page size 𝑆𝑝 is:

𝑁𝑝 =
𝑀

𝑆𝑝
 (1)

In Table 1, you can see the difference in the number of

pages for 256 GB memory space:

Table 1. Comparison of the number of memory pages using Huge Pages

Page Size 1 GB 2 MB 4 KB

Number of Pages 256 131,072 67,108,864

To quantify memory efficiency, consider the effective

latency 𝐿𝑒𝑓𝑓 of memory access:

𝐿𝑒𝑓𝑓 ≈ 𝐿𝑏𝑎𝑠𝑒+𝑃𝑚𝑖𝑠𝑠×𝐿𝑚𝑖𝑠𝑠 (2)

where 𝐿𝑏𝑎𝑠𝑒 is the base latency, 𝑃𝑚𝑖𝑠𝑠 is the probability of

a TLB miss, and 𝐿𝑚𝑖𝑠𝑠 is the penalty incurred. By leveraging

huge pages, DPDK minimizes 𝑃𝑚𝑖𝑠𝑠, thereby reducing 𝐿𝑒𝑓𝑓

and improving packet processing speed. This reduction in

complexity and latency can be crucial for applications like

IPsec, where even slight overheads in memory access

translate into higher per-packet processing times.

* Secure Sockets Layer

 Within DPDK: Because huge pages are pre-

allocated and contiguous, the time needed to

perform address translation per memory access is

reduced, maintaining stable and predictable

performance.

 Outside DPDK: Conventional memory allocations

rely on smaller pages and may involve complex

page table structures. This can increase TLB misses

and lead to non-deterministic memory access times.

b. Non-Uniform Memory Access (NUMA)-Aware

Allocation:

DPDK is aware of Non-Uniform Memory Access

(NUMA) topologies and guides memory allocations to the

memory node local to the CPU core. It uses a memory pool

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

141

represntation per NUMA node, ensuring that each core

accesses memory from the nearest NUMA node, minimizing

remote memory access:

Allocation(𝑐𝑜𝑟𝑒𝑐)→ 𝑚𝑒𝑚𝑝𝑜𝑜𝑙 𝑁𝑈𝑀𝐴(𝑐𝑜𝑟𝑒𝑐)

This ensures remote memory accesses are minimized,

improving latency effeciency and maintaining consistent

performance [15].

Figure 1. Side-by-side comparison of NUMA and non-NUMA architectures

 Within DPDK: NUMA-awareness ensures near-

constant and effecient memory access latency by

minimizing remote node memory calls.

 Outside DPDK: Generic systems often do not

control or optimize memory placement. Memory

allocated without NUMA-awareness may reside in

remote nodes, increasing latency and reducing

throughput under heavy loads.

d. Zero-Copy Data Transfer:

DPDK uses zero-copy techniques to avoid unnecessary

copying of data between buffers. Traditional packet

processing often involves multiple steps in which data is

copied from one buffer to another, creating significant

overhead. Zero-Copy techniques ensure that data is copied

directly from disk to sockets, without entering core buffers,

reducing the CPU cycles required to copy data and thus

improving performance. This feature minimizes memory

copy overhead and these optimizations offload the CPU

from basic I/O operations, which is useful when handling

large volumes of encrypted traffic [16]

 Within DPDK: Packets arrive directly into pre-

allocated mbufs, and encryption/decryption (for

IPsec) can be offloaded. There is no repeated

copying at various layers, reducing CPU cycles and

kernel intruptions lead into improving throughput.

 Outside DPDK: Traditional stacks may copy packet

data multiple times (e.g., from kernel to user space).

Such overhead is non-constant and increases

latency per packet as network load grows.

c. Direct Memory Access (DMA):

* Direct Memory Access

DPDK uses DMA to transfer data directly between the

network interface card (NIC) and program memory without

CPU intervention. This frees up data transfer tasks to the

direct memory access control section of the CPU for other

processing tasks and reduces latency by avoiding CPU

interrupts. DPDK's use of DMA* reduces CPU overhead and

increases data transfer speed, which is critical for effective

handling encryption/decryption of data packet security

protocols such as IPsec. [17]

e. Memory Pools (Mempools) and mbufs:

DPDK’s rte_mempool structure pre-allocates a pool of

fixed-size buffers (mbufs) at startup. This approach

eliminates frequent dynamic memory allocations at runtime.

Each mbuf (encapsulated in a structure rte_mbuf) holds both

packet metadata and data pointers. The fixed-size pre-

allocation and pool-based recycling of buffers ensure

constant-time buffer allocations and deallocations:

𝑇𝑎𝑙𝑙𝑜𝑐(mbuf) ≈ O(1), 𝑇𝑓𝑟𝑒𝑒(mbuf) ≈ O(1)

This deterministic behavior is critical for maintaining

low-latency and high-throughput packet processing. [18, 19]

 Within DPDK: Because mbufs are pre-allocated

and managed in fixed-size pools, allocation and

deallocation involve simple pointer operations on

lock-free rings, ensuring that each allocation or

deallocation operation does not scale with the

number of buffers already handled.

Tabatabaei Manesh et.al

 142

 Outside DPDK: Standard dynamic memory

allocators (e.g., malloc/free) cannot guarantee

constant-time complexity, as they often must

manage variable-sized requests, coalescing, and

complex metadata. This complexity leads to non-

constant (potentially O (log 𝑛) or worse)

allocation/free operations, degrading performance

under load.

f. Local Caches and Bulk Operations:

Each core maintains a local cache of mbufs to further

reduce overhead associated with accessing the global

Mempool. Bulk allocation and deallocation operations

further extinguish the cost of handling buffers by operating

on multiple objects simultaneously. Such bulk operations

can be expressed as:

BulkAlloc(k)→O(1)

for a batch of k buffers, significantly reducing per-buffer

overhead.

Similar to mbuf allocation and deallocation, bulk

operations (allocating or freeing multiple mbufs at once) are

also near O(1) per operation since they amortize the

overhead over multiple objects, further enhancing

throughput. [18, 19]

g. Lockless Data Structures:

In multi-threaded processing, a lock is a synchronization

mechanism used to control access to shared resources and

ensure that only one thread can access a resource at a time.

When a thread holds a lock, other threads that need access to

the same resource must wait for the lock to be released,

which can cause delays and reduce overall system

performance.

DPDK uses lock-free data structures for memory

management, which allows multiple CPU cores to

simultaneously access and modify memory pools without

the overhead of locking mechanisms. This is critical for

achieving high performance in multi-core systems, as it

avoids the latency associated with locking. [20-22]

 Within DPDK: The ring-based lockless approach

ensures multi-core scalability. Each operation

(enqueue/dequeue) is independent of how many

items are already in the ring.

 Outside DPDK: Traditional locks may introduce

waiting times that scale poorly as more threads and

CPU cores compete for shared resources.

h. Additional Memory and Buffer Optimization

Features:

DPDK also provides packet burst APIs

(e.g., rte_eth_rx_burst(), rte_eth_tx_burst()) to fetch and

send multiple packets at once. This reduces the overhead of

per-packet function calls and enhances instruction cache

locality. Prefetch instructions are extensively used within the

data path (e.g., rte_prefetchX()) to fetch upcoming packet

metadata into caches before processing, reducing CPU

pipeline stalls.

DPDK Security Library:

The librte_cryptodev in DPDK abstracts hardware and

software cryptographic accelerators, providing a unified

interface for cryptographic operations such as encryption,

decryption, hashing, and authentication. The cryptodev

library:

 Defines a common API and data-path programming

model for crypto operations.

 Supports both dedicated hardware solutions (e.g.,

Intel QuickAssist adapters) and CPU-based

cryptographic extensions (e.g., AES-NI, ARMv8

crypto extensions)

 Uses a queue-based model to

submit rte_crypto_op structures for batch

processing. A rte_crypto_op encapsulates all

necessary cryptographic operation parameters,

keys, and buffer pointers.

 Allows asynchronous processing of cryptographic

jobs, enabling pipelines where packet input/output,

cryptographic, and other processing stages run

concurrently. [23, 24]

Conceptually, the cryptodev subsystem can be modeled

as:

Crypto Input Crypto Device Processed Packets

Completion rte_crypto_op

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

 143

This model decouples the cryptographic transformations

from the main application logic, enabling easy offloading of

IPsec operations and ensuring minimal performance penalty

for security.

 Within DPDK: Cryptodev integration with IPsec

leads to highly efficient cryptographic

transformations, often processed in batches and

offloaded seamlessly to hardware accelerators.

 Outside DPDK: Without cryptodev, implementing

high-throughput IPsec would require custom

integration of cryptographic engines, often

incurring context switches, synchronization

overhead, and variable processing times.

Integration with IPsec:

DPDK’s cryptodev library forms the backbone of IPsec

acceleration. The IPsec protocol stack can leverage the

cryptodev APIs to perform Encryption/Authentication (e.g.,

AES-GCM) on packets inline or via a simple offload model.

When combined with DPDK’s zero-copy and DMA-based

operations, cryptodev ensures cryptographic transformations

do not become a bottleneck.

3.2. Internet Protocol Security (IPSec)

As mentioned, IPsec is a set of protocols designed to

ensure the confidentiality and integrity of data

communications in IP networks. This is possible through

two main protocols; Authentication Header (AH), which

provides only authentication, and Encapsulating Security

Payload (ESP), which provides both authentication and

packet confidentiality. These protocols can work either in

transport mode, where only the original data is encrypted and

the IP data remains intact, or in tunnel mode, where the entire

original IP packet (including the IP data and the original

data) is encrypted and packed into a new IP packet. The

choice of these protocols depends on the security

requirements of the network. [25].

IPsec thus provides comprehensive end-to-end security at

the network layer, ensuring that sensitive information

remains protected regardless of the underlying applications

or services.

In the SDN-based, high-performance architecture

proposed, IPsec is not only an added feature—it’s a strategic

choice that complements both DPDK’s acceleration

capabilities and VPP’s modular, vectorized packet

processing. By applying cryptographic safeguards at the IP

layer, IPsec delivers strong security uniformly across all

network functions without requiring application-specific

solutions. This uniformity is critical in a modern SDN

environment where policies must be administrated centrally

yet spreed consistently to all data plane elements. [26] [27]

Key reasons and benefits for integrating IPsec into this

framework include:

a. Uniform Security Policy Enforcement:

 IPsec ensures that all traffic, regardless of

application or service, is subject to the

same security controls.

 This uniformity simplifies network

management by centralizing policy

definition at the SDN controller, ensuring

consistent enforcement across diverse

endpoints and network segments.

b. Synergy with DPDK for High Performance:

 Leveraging DPDK’s cryptographic

acceleration (via the cryptodev library)

minimizes the performance overhead

typically associated with encryption and

authentication tasks.

 Hardware offloads and zero-copy

buffering keep latency low and throughput

high, ensuring that security does not

become a bottleneck.

c. Scalability and Adaptability in SDN:

 As SDN controllers dynamically adjust

network flows, IPsec policies can be

updated on-the-fly, maintaining secure

channels in line with evolving operational

requirements.

 This capability ensures that as new routes

are provisioned or old ones are

reconfigured, the confidentiality and

integrity of data remain uncompromised.

d. Reduced Complexity and Dependency on

Specialized Hardware:

 Instead of relying on dedicated encryption

devices or specialized security appliances,

IPsec-enabled packet processing can be

implemented on servers running the SDN

data plane.

 This approach cuts down on complexity,

reduces hardware acquisition costs, and

Tabatabaei Manesh et.al

 144

allows rapid scaling or re-deployment of

security functions as the network grows or

changes.

e. Interoperability and Industry Support:

 IPsec is widely recognized, standardized,

and supported across networking

equipment and vendor solutions.

 Using IPsec eases integration with

existing infrastructure, partner networks,

and cloud services that already rely on

these well-understood security protocols.

f. Sustained High Throughput Under

Cryptographic Load:

 With DPDK handling the packet I/O

efficiently and VPP optimizing packet

processing workflows, IPsec

encryption/decryption functions can be

performed at near line-rate speeds.

 The architecture can handle heavy traffic

loads, multiple tunnels, and a wide variety

of topologies without significant

degradation in performance.

g. Seamless Integration with VPP:

 IPsec nodes can be incorporated into the

VPP processing graph, enabling

vectorized operations and batch

processing of encrypted flows.

 This integration ensures that packet

processing, from ingress to secure

encapsulation to forwarding, occurs

smoothly within a single, unified pipeline.

3.3. Vector Packet Processing (VPP)

VPP is an open-source, high-performance packet

processing engine that applies vectorization principles to

packet operations. Rather than processing one packet at a

time (scalar processing), VPP processes batches (vectors) of

packets through a directed graph of processing nodes to

minimize instruction cache misses and improve throughput.

Each node applies a specific function to the entire vector

before moving on [28].

Key Architectural Elements of VPP:

a. I-Cache Efficiency and Vectorization:

In scalar processing, each packet may cause new

instructions to load into the CPU’s instruction cache (I-

cache), increasing the probability of I-cache thrashing. With

vector processing, the CPU executes the same instructions

on multiple packets consecutively, significantly reducing

instruction cache misses. Once the I-cache is “warm” for the

first packet in the vector, subsequent packets in that vector

get the benefit:

Processing(𝑉𝑝𝑘𝑡𝑠) = ∑ 𝑓(𝑝𝑎𝑐𝑘𝑒𝑡𝑖)
|𝑉𝑝𝑘𝑡𝑠|

𝑖=1
 with reduced per-packet overhead. (3)

b. Graph-Based Extensibility:

VPP models the data plane as a graph G=(V,E), where

each node v∈V in the graph represents a distinct feature or

function (e.g., L2 input, IP4 input, IPsec tunnel input) and

Edges e∈E represent how packets flow between features.

Packets traverse nodes as edges dictate. This modular

structure allows easy insertion of new features (e.g., IPsec

nodes) or hardware offload blocks:

G=(V,E): Each v∈V is a function; edges E define flow o

f packets.

c. Parallelism and Scalability:

VPP exploits multi-core CPU architectures by

distributing graph nodes across threads and cores. Combined

with DPDK’s lockless memory structures, VPP can scale

linearly with CPU cores:

 Within DPDK: The synergy of vectorized

packet processing with pre-allocated

mbufs and zero-copy techniques improves

throughput and latency stability.

 Without DPDK: Other packet processing

frameworks may not achieve such

efficient vectorization or may rely on

kernel-based stacks causing unpredictable

latency and lower throughput.

d. Integration with IPsec:

Integrating IPsec within VPP’s graph nodes (e.g., ESP

encapsulation/decapsulation nodes) ensures that

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

 145

cryptographic transformations occur inline and benefit from

vectorization. Leveraging DPDK’s cryptodev library, VPP

can offload cryptographic operations and process packets in

batches, reducing overhead per packet and maintaining

stable line-rate performance even under encryption-

intensive workloads

This vectorized architecture substantially reduces CPU

pipeline stalls and I-cache thrashing, making VPP

particularly suitable for high-throughput, low-latency

networking functions required in advanced SDN

deployments. When combined with DPDK’s underlying fast

I/O and IPsec hardware acceleration, VPP enables a highly

modular, scalable, and efficient software-based networking

stack [29-33].

The following is architectural view of the VPP layer. [32]

Figure 2. VPP Layers

VPP Infra:

The infrastructure layer of VPP, which contains the

source code of the kernel library. This layer performs

memory operations, works with vectors and loops, performs

key lookups in tables, and works with timers to dispatch

graph nodes.

VLIB (Vector Library):

The VLIB is at the core of VPP. It provides fundamental

data structures (vectors, hash tables, memory allocators),

scheduling routines for graph nodes, and thread

management. The vector abstraction reduces I-cache

thrashing by ensuring that the CPU repeatedly executes the

same sequence of instructions on a batch of packets before

moving to another node.

VNET (VPP Network Stack):

The VNET layer builds on VLIB and provides network-

specific functionalities: IP routing, switching, and session

management. It interacts closely with DPDK for fast I/O and

can integrate IPsec processing nodes that rely on cryptodev

accelerators.

Plugins and Extensibility:

VPP supports plugins that can introduce new graph nodes

or modify existing ones. For IPsec, there are dedicated

plugin nodes handling ESP encapsulation/decapsulation.

These nodes invoke cryptodev-like interfaces to offload

cryptographic tasks if available.

4. Proposed System Architecture

The proposed system architecture leverages DPDK for

accelerated packet I/O and cryptographic offloads, integrates

IPsec security features for data confidentiality and integrity,

and employs VPP’s vectorized packet processing to

maintain high throughput at scale. An SDN controller

Tabatabaei Manesh et.al

 146

provides centralized logic for dynamic policy adjustments,

key management, and network configuration. The

combination of these technologies ensures secure, flexible,

and performant traffic handling suitable for modern SDN

environments.

At a high level, the data plane—composed of DPDK and

VPP—handles packets entirely in user space. This

eliminates kernel-based context switching, interuptions and

overhead, achieving near line-rate processing even under

cryptographic loads. The control plane—managed by an

SDN controller—enforces IPsec policies, updates Security

Associations (SAs), and manage VPP graph configurations

in real-time, enabling dynamic adaptation to changing

network conditions. Each component plays a specialized

role:

Table 2. Proposed System Architect Component Relationship

Component Role Dependency

SDN Controller Policy and rule management VPP

VPP Dynamic routing and IPsec setup DPDK, SDN Controller

DPDK Fast packet I/O and encryption CryptoDev, NICs

CryptoDev IPsec encryption and decryption DPDK

NICs Physical packet transmission DPDK

Figure 3. Proposed system Architect Diagram

4.1. System Data Flow

The following outlines the end-to-end flow of a packet

through the system:

1. Packet Ingress: Packets arrive at a DPDK-enabled

NIC and are received directly into mempools using

the Poll Mode Driver (PMD). This bypasses the

kernel, eliminating interrupt-driven overhead.

2. IPsec Processing: Packets requiring encryption or

decryption are handed to CryptoDev for IPsec

transformations:

 The IPsec policies and Security

Associations (SAs) are defined and secure

IPsec tunnels established and maintain by

using the IKEv2 protocol.

 CryptoDev performs encryption (e.g.

AES-GCM) or decryption based on these

policies.

3. Routing and Switching (VPP): VPP retrieves the

encrypted/decrypted packets and processes them

through a graph of nodes. The VPP IPsec

nodes integrate with CryptoDev to offload

cryptographic operations efficiently.

4. Dynamic Control: The SDN Controller interfaces

with VPP and IPSec to:

 Update IPsec policies and cryptographic

keys dynamically.

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

 147

 Modify VPP graph configurations to adapt

to real-time network changes.

5. Packet Egress: VPP forwards the processed

packets back to DPDK, which transmits them

through the NIC to the next hop.

This pipeline ensures minimal latency and efficient

utilization of CPU and hardware resources.

4.2. Key Components

4.2.1. DPDK: High-Performance Packet Processing

DPDK is the foundation for the data plane, enabling zero-

copy, user-space packet processing.

Key Features:

1. Poll Mode Driver (PMD):

 Captures packets directly from the NIC,

bypassing the kernel to reduce latency.

 Processes packets using a continuous

polling mechanism, eliminating

interrupts.

2. Memory Management:

 Mempools: Pre-allocated memory pools

for packet buffers.

 Huge Pages: Uses large memory pages (2

MB) to reduce TLB misses and improve

memory access speed.

3. CryptoDev Library:

 Provides an interface for offloading

encryption/decryption tasks to hardware

accelerators.

 Ensures encryption mrthods for IPsec is

performed at line rate.

4.2.2. IPsec: Secure Communication

IPsec ensures data confidentiality, integrity, and

authentication at the network layer. It is selected for its

modular design, compliance with IKEv2 standards, and

support for hardware acceleration to enhance performance.

Key Features:

1. IKEv2 Daemon:

 Negotiates secure IPsec tunnels between

endpoints.

 Manages key exchanges and tunnel

lifetimes.

2. ESP (Encapsulating Security Payload):

 Encrypts and authenticates packet

payloads, commonly using different

algorithm (e.g. AES-GCM) for both

encryption and integrity.

3. Integration with DPDK:

 Utilizes DPDK’s CryptoDev for

hardware-accelerated encryption.

 Interfaces with VPP through tap interfaces

to ensure efficient packet processing and

routing.

4.2.3. VPP: Dynamic Routing and Switching

VPP is responsible for routing and switching packets

efficiently.

Key Features:

1. Graph-Based Processing:

 Packet flows are processed through

modular graph nodes, each performing a

specific function (e.g., IPsec processing,

routing).

2. IPsec Tunnel Management:

 VPP applies IPsec tunnels and manages

packet forwarding dynamically.

3. Interface Management:

 VPP supports physical interfaces (e.g.,

NICs) and virtual interfaces

like tap devices.

4.3. Implementation Approach

The implementation is divided into three key stages:

1. System Initialization and Configuration:

 Setting up DPDK to handle packet ingress

and egress efficiently.

 Configuring CryptoDev for hardware-

accelerated IPsec operations.

 Initializing VPP to manage routing,

switching, and tunnel configurations.

2. Packet Processing Pipeline:

 Ingesting packets from NICs using

DPDK's Poll Mode Drivers (PMD).

 Encrypting or decrypting packets with

IPsec through CryptoDev.

 Routing packets dynamically using VPP

based on SDN controller policies.

Tabatabaei Manesh et.al

 148

3. Performance Tuning and Optimization:

 Fine-tuning buffer sizes, queue depths,

and other system parameters to handle

high throughput.

 Implementing parallelism across cores for

scalability.

4.4. Important Configuration and Code Details

This section provides essential configurations and code

snippets. It highlights the parameters critical for replication

and execution.

4.4.1. DPDK Initialization Code

The following code initializes the DPDK environment

and configures memory pools and network interfaces.

// Initialize Environment Abstraction Layer (EAL)

int ret = rte_eal_init(argc, argv);

if (ret < 0) {

 rte_exit(EXIT_FAILURE, "EAL initialization

failed\n");

}

// Memory Pool for Packet Buffers

struct rte_mempool *mbuf_pool =

rte_pktmbuf_pool_create(

 "MBUF_POOL", 8192, 250, 0,

RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()

);

if (mbuf_pool == NULL) {

 rte_exit(EXIT_FAILURE, "Cannot create memory

pool\n");

}

// Configure NIC Ports

uint16_t port_id;

RTE_ETH_FOREACH_DEV(port_id) {

 struct rte_eth_conf port_conf = {

 .rxmode = { .max_rx_pkt_len =

RTE_ETHER_MAX_LEN },

 };

 rte_eth_dev_configure(port_id, 1, 1, &port_conf);

 rte_eth_rx_queue_setup(port_id, 0, 512,

rte_eth_dev_socket_id(port_id), NULL, mbuf_pool);

 rte_eth_tx_queue_setup(port_id, 0, 512,

rte_eth_dev_socket_id(port_id), NULL);

 rte_eth_dev_start(port_id);

}

Parameter Descriptions:

 rte_pktmbuf_pool_create:

o "MBUF_POOL": Name of the memory

pool.

o 8192 (NUM_MBUFS): Number of

buffers in the pool. Should match packet

throughput to avoid dropping packets.

o 250 (MBUF_CACHE_SIZE): Number of

buffers cached per core to reduce

mempool access overhead.

o RTE_MBUF_DEFAULT_BUF_SIZE (2

048): Size of each buffer. This must

account for packet size + headers.

 rte_eth_rx_queue_setup / rte_eth_tx_queue_set

up:

o 512: Queue size. Challenge: Queue size

must match traffic burst size to avoid

packet drops or excessive latency.

4.4.2. CryptoDev Configuration for IPsec

// Configure Crypto Device

struct rte_cryptodev_config dev_conf = {

 .socket_id = rte_socket_id(),

 .nb_queue_pairs = 2, // Supports parallelism

};

rte_cryptodev_configure(crypto_dev_id, &dev_conf);

// Configure IPsec Cipher and Authentication

struct rte_crypto_sym_xform cipher_xform = {

 .type = RTE_CRYPTO_SYM_XFORM_CIPHER,

 .cipher = {

 .algo = RTE_CRYPTO_CIPHER_AES_GCM,

 .key.length = 32, // AES-256

 },

};

struct rte_crypto_sym_xform auth_xform = {

 .type = RTE_CRYPTO_SYM_XFORM_AUTH,

 .auth = {

 .algo = RTE_CRYPTO_AUTH_SHA256_HMAC,

 .key.length = 32, // 256-bit HMAC

 },

};

// Link Cipher and Auth

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

 149

cipher_xform.next = &auth_xform;

Parameter Descriptions:

 rte_cryptodev_config:

o socket_id: NUMA-aware placement of

cryptographic operations.

o nb_queue_pairs: Number of queue pairs.

This enables parallel processing of crypto

tasks across cores.

 RTE_CRYPTO_SYM_XFORM_CIPHER / RT

E_CRYPTO_SYM_XFORM_AUTH:

o RTE_CRYPTO_CIPHER_AES_GCM:

AES-GCM is chosen for efficiency as it

combines encryption and integrity.

o key.length: Key size (32 bytes = 256-bit)

ensures strong security.

4.4.3. VPP Configuration for Routing and IPsec

bash

Copy code

VPP Tap Interface

vppctl create tap id 0 host-if-name vpp-tap0

vppctl set int state tap0 up

vppctl set int ip address tap0 10.0.0.1/24

IPsec Tunnel Configuration

vppctl ipsec add tunnel src 10.0.0.1 dst 192.168.1.1 local-

spi 100 remote-spi 200 crypto-alg aes-gcm-256 integ none

vppctl set interface state ipsec0 up

Static Route Configuration

vppctl ip route add 192.168.2.0/24 via 10.0.0.2 tap0

Parameter Descriptions:

 create tap id 0 host-if-name vpp-tap0:

o id 0: Tap interface ID.

o vpp-tap0: Interface name visible to the

host. Challenge: Interface names must not

conflict with existing interfaces.

 ipsec add tunnel:

o src / dst: Source and destination IP

addresses for the IPsec tunnel.

o local-spi / remote-spi: Security Parameter

Indexes (SPI) for the tunnel. These values

must match on both endpoints.

o crypto-alg aes-gcm-256: Specifies AES-

GCM for combined encryption and

integrity.

o integ none: GCM already provides

integrity, so no additional algorithm is

needed.

 ip route add:

o 192.168.2.0/24: Remote subnet routed

through the IPsec tunnel.

o via 10.0.0.2: Next-hop address.

SPI mismatches or incorrect routes can result in dropped

packets or failed tunnel setups.

Each code snippet above plays a critical role in building

a high-performance, secure SDN network. Key challenges

include:

1. Resource Allocation: Ensuring sufficient

hugepages, memory pools, and NIC queues.

2. CryptoDev Hardware Support: Hardware

acceleration must be enabled to achieve optimal

IPsec performance.

3. VPP Tunnel Integrity: SPI values, encryption

algorithms, and routes must align between

endpoints.

4. NUMA Optimization: Cores, memory, and NIC

placement must be NUMA-aware to reduce

latency.

Use-Case Scenarios and future AI approach

Here are practical examples of how the system operates

in real-world scenarios:

1. Secure Communication Between Data Centers:

 Traffic between two data centers is

encrypted using IPsec tunnels.

 DPDK handles the high-throughput data

plane, and VPP dynamically routes the

traffic based on SDN policies.

2. Dynamic Policy-Based Routing:

 The SDN Controller updates flow rules in

real time (e.g., due to congestion or a

DDoS attack).

 VPP immediately adapts and reroutes

traffic without interrupting packet flow.

3. High-Performance Firewall:

 Incoming packets are inspected,

encrypted/decrypted (using CryptoDev),

and forwarded efficiently by VPP through

DPDK.

Artificial intelligence approaches to achieve network

security in SDN networks

The application of artificial intelligence (AI) and machine

learning (ML) techniques to SDN environments is gaining

Tabatabaei Manesh et.al

 150

momentum as network operators seek more dynamic,

autonomous, and robust solutions. AI-driven strategies can

enable real-time analysis of traffic patterns, predictive

modeling of network conditions, and automated decision-

making to enhance both performance and security.

Studies have demonstrated the effectiveness of AI-driven

methods for optimizing routing and load balancing within

SDN. For example, work in [34] employed reinforcement

learning to leverage real-time feedback from the network,

dynamically adjusting paths and improving throughput. By

periodically evaluating network conditions, the controller

can determine when and how to reroute traffic, thus

improving resilience and efficiency. Similarly, the authors in

[35] utilized Q-learning to improve data transmission rates

in SDN scenarios. Their approach tested single-metric and

multi-metric variants of Q-Routing algorithms, revealing

that single-metric Q-Routing significantly outperformed

traditional heuristic-based routing in both static and dynamic

topologies, while also converging faster than shortest-path

(K-Shortest Path) algorithms.

These findings indicate that employing AI within SDN

can substantially enhance network performance and

intelligence. By integrating such AI-based routing and

decision-making mechanisms with the secure, high-

throughput architecture proposed in this paper—where SDN

is fortified by DPDK, IPsec, and potentially VPP—network

operators can ensure that optimization and security operate

in tandem. As future research continues to refine AI

techniques and incorporate more metrics, the fusion of AI-

based decision engines with secure, high-speed SDN

frameworks may set a new standard for both performance

and protection.

5. Conclusion

This paper presents a conceptual integration of IPsec,

DPDK, and VPP within an SDN architecture, aiming to

achieve both high-performance packet handling and

stringent security measures. The technologies discussed

exhibit well-documented capabilities that strongly suggest

synergistic gains. DPDK, by bypassing the kernel and

employing advanced memory management techniques,

delivers line-rate packet processing essential for sustaining

high throughput in increasingly complex networks. IPsec,

integrated through hardware-accelerated cryptodev

interfaces, ensures robust end-to-end data protection without

imposing prohibitive overheads.

VPP contributes an additional layer of agility and

scalability, allowing for the seamless introduction of custom

routing and switching functionalities. When managed by a

centralized SDN controller, the resulting framework

maintains low latency, secure operations, and dynamic

adaptability. This aligns well with evolving network

demands, where rapid response to changing traffic

conditions and threat landscapes is critical.

Future empirical validations, performance benchmarks,

and expanded AI-driven routing approaches can further

refine and solidify this integrated solution. As research and

development progress, the combined strengths of SDN,

IPsec, DPDK, and VPP stand to shape next-generation

networking paradigms, optimizing for both efficiency and

security across diverse and distributed environments.

Authors’ Contributions

Authors equally contributed to this article.

Acknowledgments

Authors thank all participants who participate in this

study.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethical Considerations

All procedures performed in this study were under the

ethical standards.

References

[1] A. Haggag, "Network optimization for improved performance

and speed for SDN and security analysis of SDN

vulnerabilities," International Journal of Computer Networks

and Communications Security, vol. 5, pp. 83-90, May 2019.

[2] A. D. Al-Ani and N. I. Abdullah, "Software defined networks

challenges and future direction of research," International

Journal of Research, vol. 1, pp. 618-629, Jan 2019.

[3] A. Coly, M. Mbaye, and S.-L. Gaston Berger University, "S-

SDS: a framework for security deployment as service in

software defined networks," May 2019.

[4] G. Lopez-Millan, R. Marin-Lopez, and F. Pereniguez-Garcia,

"Towards a standard SDN-based IPsec management

framework," Journal of Computer Standards & Interfaces,

vol. 66, May 2019, doi: 10.1016/j.csi.2019.103357.

 Management Strategies and Engineering Sciences: 2024; 6(5):138-151

 151

[5] Dpdk.org, "Poll Mode Driver - Data Plane Development Kit

24.03.0 documentation." [Online]. Available:

http://doc.dpdk.org/guides-

24.03/prog_guide/poll_mode_drv.html.

[6] L. Linguaglossa, D. Rossi, S. Pontarelli, C. Telecom

ParisTech, V. University of Rome Tor, and I. Cisco Systems,

"High-speed data plane and network functions virtualization

by vectorizing packet processing," Journal of Computer

Networks, vol. 149, pp. 187-199, Feb 2019, doi:

10.1016/j.comnet.2018.11.033.

[7] J. Pak and K. Park, "A High-Performance implementation of

an IoT system using DPDK," Journal of Applied Sciences, vol.

8, no. 4, p. 550, Apr 2018, doi: 10.3390/app8040550.

[8] A. Belkhiri, M. Pepin, M. Bly, M. Polytechnique, and I. Ciena,

"Performance analysis of DPDK-based applications through

tracing," Journal of Parallel and Distributed Computing, vol.

173, pp. 1-19, Mar 2023, doi: 10.1016/j.jpdc.2022.10.012.

[9] S. Kaur, K. Kumar, N. Aggarwal, E. University Institute of,

and P. U. C. I. Technology, "A review on P4-Programmable

data planes: Architecture, research efforts, and future

directions," The International Journal for the Computer and

Telecommunications, vol. 170, pp. 109-129, Mar 2021, doi:

10.1016/j.comcom.2021.01.027.

[10] T. Döring, H. Stubbe, K. Holzinger, A. Chair of Network, and

D. o. I. T. U. o. M. G. Services, "SmartNICs: Current trends

in research and industry," May 2021.

[11] X. Yang and L. Wang, "SDN Load Balancing Method based

on K-Dijkstra," International Journal of Performability

Engineering, vol. 14, no. 4, pp. 709-716, Apr 2018, doi:

10.23940/ijpe.18.04.p14.709716.

[12] A. Kumar, D. Anand, and M. Chandigarh University, "Load

balancing for software defined network using machine

learning," Turkish Journal of Computer and Mathematics

Education, vol. 12, no. 12, pp. 527-535, Apr 2021, doi:

10.17762/turcomat.v12i2.876.

[13] D. Todorov, H. Valchanov, and V. Aleksieva, "Load

Balancing model based on Machine Learning and Segment

Routing in SDN," in 2020 International Conference

Automatics and Informatics (ICAI), Varna, Bulgaria, Oct

2020, pp. 1-4, doi: 10.1109/ICAI50593.2020.9311385.

[14] J. Spooner and S. Y. Zhu, "A review of solutions for SDN-

Exclusive security issues," International Journal of Advanced

Computer Science and Applications, vol. 7, no. 8, 2016.

[15] A. Pradhan and R. Mathew, "Solutions to vulnerabilities and

threats in Software defined networking (SDN)," in Third

International Conference on Computing and Network

Communications, Jan 2020, vol. 171, pp. 2581-2589, doi:

10.1016/j.procs.2020.04.280.

[16] Dpdk.org, "IPv4 Multicast Sample Application - Data Plane

Development Kit 24.03.0 documentation." [Online].

Available: http://doc.dpdk.org/guides-

24.03/sample_app_ug/ipv4_multicast.html.

[17] J. Kubálek and T. Brno University of, "High-speed DMA

packet transfer in system DPDK," May 2018.

[18] Dpdk.org, "Mempool Library - Data Plane Development Kit

24.03.0 documentation." [Online]. Available:

https://doc.dpdk.org/guides/prog_guide/mempool_lib.html.

[19] Dpdk.org, "Mbuf Library - Data Plane Development Kit

24.03.0 documentation." [Online]. Available:

https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html.

[20] A. Baumstark and C. Pohl, "Lock-free data structures for data

stream processing," Datenbank-Spektrum Journal, vol. 19, pp.

209-218, Oct 2019, doi: 10.1007/s13222-019-00329-4.

[21] J. Kong, "DPDK Optimization on arm," Tools, Software and

IDEs - Arm Community, 2022. [Online]. Available:

https://community.arm.com/arm-community-blogs/b/tools-

software-ides-blog/posts/dpdk-optimization-on-arm.

[22] Dpdk.org, "RCPU Library - Data Plane Development Kit

24.03.0 documentation." [Online]. Available:

https://doc.dpdk.org/guides/prog_guide/rcu_lib.html.

[23] Dpdk.org, "Cryptography Device Library - Data Plane

Development Kit 24.03.0 documentation." [Online].

Available:

https://doc.dpdk.org/guides/prog_guide/cryptodev_lib.html.

[24] Dpdk.org, "Security Library - Data Plane Development Kit

24.03.0 documentation." [Online]. Available:

https://doc.dpdk.org/guides/prog_guide/rte_security.html.

[25] E. Barker, Q. Dang, S. Frankel, K. Scarfone, and P. Wouters,

"Guide to IPSEC VPNs," National Institute of Standards and

Technology, Jun 2020, doi: 10.6028/NIST.SP.800-77r1.

[26] M. Vajaranta, J. Kannisto, J. Harju, and T. Tampere

University of, "IPSEC and IKE as functions in SDN controlled

network," in 11th International Conference on Network and

System Security, Helsinki, Finland, Aug 2017, pp. 521-530,

doi: 10.1007/978-3-319-64701-2_39.

[27] O. Abolade, A. Okandeji, A. Oke, M. Osifeko, and A. Oyedeji,

"Overhead effects of data encryption on TCP throughput

across IPSEC secured network," Journal of Scientific African,

vol. 13, p. e00855, Sep 2021, doi:

10.1016/j.sciaf.2021.e00855.

[28] Fd.io, "What is vector packet processing? - Vector Packet

Processor 01 documentation." [Online]. Available:

https://fdio-

vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-

vector-packet-processing.html.

[29] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S.

Pontarelli, and D. Rossi, "High-Speed Software Data Plane via

Vectorized Packet Processing," IEEE Communications

Magazine, vol. 56, no. 12, pp. 97-103, Dec 2018, doi:

10.1109/MCOM.2018.1800069.

[30] Fd.io, "Scalar vs Vector packet processing - The Vector

Packet Processor v24.06-rc1-0-gb3304b2b7 documentation."

[Online]. Available: https://s3-

docs.fd.io/vpp/24.06/aboutvpp/scalar-vs-vector-packet-

processing.html.

[31] Fd.io, "VPP Technology." [Online]. Available:

https://fd.io/technology/.

[32] Fd.io, "The Packet Processing Graph - The Vector Packet

Processor v22.10-0-g07e0c05e6 documentation." [Online].

Available:

https://docs.fd.io/vpp/22.10/aboutvpp/extensible.html?highli

ght=modular.

[33] The Linux Foundation, "FD.io doubles packet throughput

performance to terabit levels - Linux Foundation," Sep 13,

2022. [Online]. Available:

https://www.linuxfoundation.org/press/press-release/fd-io-

doubles-packet-throughput-performance-to-terabit-levels.

[34] M. A. Jameel, T. Kanakis, S. Turner, A. Al-Sherbaz, and W.

S. Bhaya, "A Reinforcement Learning-Based Routing for

Real-Time Multimedia Traffic Transmission over Software-

Defined Networking," International Journal of Electronics,

vol. 11, no. 15, p. 2441, Aug 2022, doi:

10.3390/electronics11152441.

[35] D. Harewood-Gill, T. Martin, and R. Nejabati, "The

Performance of Q-Learning within SDN Controlled Static and

Dynamic Mesh Networks," in 2020 6th IEEE Conference on

Network Softwarization (NetSoft), Ghent, Belgium, 2020, pp.

185-189, doi: 10.1109/NetSoft48620.2020.9165530.

http://doc.dpdk.org/guides-24.03/prog_guide/poll_mode_drv.html
http://doc.dpdk.org/guides-24.03/prog_guide/poll_mode_drv.html
http://doc.dpdk.org/guides-24.03/sample_app_ug/ipv4_multicast.html
http://doc.dpdk.org/guides-24.03/sample_app_ug/ipv4_multicast.html
https://doc.dpdk.org/guides/prog_guide/mempool_lib.html
https://doc.dpdk.org/guides/prog_guide/mbuf_lib.html
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/dpdk-optimization-on-arm
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/dpdk-optimization-on-arm
https://doc.dpdk.org/guides/prog_guide/rcu_lib.html
https://doc.dpdk.org/guides/prog_guide/cryptodev_lib.html
https://doc.dpdk.org/guides/prog_guide/rte_security.html
https://fdio-vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-vector-packet-processing.html
https://fdio-vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-vector-packet-processing.html
https://fdio-vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-vector-packet-processing.html
https://s3-docs.fd.io/vpp/24.06/aboutvpp/scalar-vs-vector-packet-processing.html
https://s3-docs.fd.io/vpp/24.06/aboutvpp/scalar-vs-vector-packet-processing.html
https://s3-docs.fd.io/vpp/24.06/aboutvpp/scalar-vs-vector-packet-processing.html
https://fd.io/technology/
https://docs.fd.io/vpp/22.10/aboutvpp/extensible.html?highlight=modular
https://docs.fd.io/vpp/22.10/aboutvpp/extensible.html?highlight=modular
https://www.linuxfoundation.org/press/press-release/fd-io-doubles-packet-throughput-performance-to-terabit-levels
https://www.linuxfoundation.org/press/press-release/fd-io-doubles-packet-throughput-performance-to-terabit-levels

