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Abstract 

The paper presents a scalable, software-centric architecture for secure, high-performance networking in the SDN 

environment. Our approach merges robust security with near line-rate throughput by integrating high-speed packet 

processing capabilities with optimized cryptographic operations into one cohesive SDN framework. At the heart of the 

architecture is the Data Plane Development Kit, which, through user-space processing, zero-copy buffering, advanced 

memory management, introduces low latency with reduced intruptions for packet handling. It integrates IPsec in such a way 

as to provide data confidentiality and integrity at the IP layer. The architecture takes advantage of vector packet processing 

to flexibly manipulate packets, adapt routing decisions on the fly, and make changes according to evolving network 

requirements. This forms one cohesive system that ties security with speed, giving operators agility to scale services, enforce 

policies, and protect sensitive data with software-driven efficiencies and minimal reliance on specialty hardware. 
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1. Introduction 

SDN* provides a paradigm shift in managing the network 

by separating the control plane from the data plane. This can 

enable the programmability of networks in a centralized and 

dynamic manner. Traditional architectures have often led to 

inflexibility, vendor lock-in, and the inability of rapid 

adaptation against evolving requirements. In contrast, the 

abstraction of the control plane in SDN offers a holistic view 

of the network while automating tasks that include policy 

enforcement, traffic engineering, and orchestrated 

automation. That essential redesign not only operationalizes 

the simplicity of networks but also seamlessly integrates new 

services and technologies. 

Despite these advantages, the SDN environment brings in 

different kinds of security challenges. Unauthorized access 

to the centralized SDN controller or interception of control 

messages would risk network policies and data integrity and 

potentially enable malicious activities [1, 2]. As networks 

continue to evolve and scale, robust security measures must 

be seamlessly integrated without degrading performance. 

IPSec† is a widely adopted suite of protocols that provides 

confidentiality, integrity, and authentication at the IP layer. 

Its integration into SDN can enhance the security of the 

control and data channels in a way that only authorized 

parties can modify or access critical state information [3, 4]. 

However, most traditional IPsec gateways rely on the kernel-

based Linux protocol stack, entailing multiple data copies 

and synchronization overhead. This leads to latency and 

throughput penalties-unacceptable in today's high-speed 

networking scenarios [5]. 

These performance bottlenecks are taken care of by the 

Data Plane Development Kit (DPDK), which processes the 

packets completely in user space and bypasses the kernel 

altogether. DPDK achieves faster packet processing by 

exploiting NUMA‡-awareness, huge pages, zero-copy 

optimizations, and hardware offloading. By accelerating 

packet handling, DPDK reduces the performance costs 

caused by IPsec overheads [6]. This synergy of SDN, IPsec, 

and DPDK forms a secure high-throughput networking 

foundation. 

To further enhance performance and flexibility, Vector 

Packet Processor (VPP) can be integrated as a modular 

dataplane engine. This realizes advanced packet 

manipulation, routing, and switching functionalities without 

sacrificing the line-rate performance. The SDN, IPsec, 

                                                           
* Software – Defined Networking 
† Internet Protocol Security 

DPDK, and VPP together provide the full, secure, effective 

environment for modern network operation. 

2. Literature Review 

Software-defined networking (SDN) has revolutionized 

network management, offering unprecedented flexibility 

and programmability. However, achieving optimal 

performance and robust security in SDN environments is a 

focal point for research and development. 

Several studies have addressed the performance 

limitations of older SDN architectures. One of the areas of 

focus in SDN research is increasing network speed through 

the integration of specialized data plane processing 

techniques. For example, the use of the Data Plane 

Development Kit (DPDK) has attracted considerable 

attention due to its ability to speed up packet processing by 

bypassing the operating system kernel and executing data 

plane tasks directly in user space. Several studies have 

shown the effectiveness of DPDK in improving packet 

processing efficiency and reducing latency in SDN 

environments. [7, 8] Also, in [9], the authors investigated the 

effect of using programmable data planes to speed up packet 

processing, and in [10], the authors investigated the 

improvement of packet processing efficiency by using 

hardware techniques such as SmartNIC.  

In other researches, load balancing algorithms suitable for 

SDN environments have also been investigated. In [11-13], 

machine learning-based approaches for load balancing and 

optimization of packet processing and routing based on 

various network criteria and application requirements have 

been reviewed. Their findings show improved network 

utilization and reduced congestion compared to traditional 

load balancing methods. 

A result of this research shows that focusing only on one 

part of the entire packet processing process, such as network 

controls or traffic load balancing, does not have the ability 

to create sufficient efficiency to manage the increasing 

traffic load of today's networks. 

SDN's centralized control plane presents opportunities 

and challenges for security. In parallel, it has become 

necessary to ensure strong security mechanisms in SDN 

networks to protect against a wide range of cyber threats. In 

[14, 15], the authors have investigated the types of attacks in 

SDN networks and proposed solutions for them such as 

Avant-Guard and VAVE (Virtual source Address Validation 

‡ Non-Uniform Memory Access 



Tabatabaei Manesh et.al 

 

140 

Edge) or the use of SSL* encryption and entropy analyses. 

The result of this research shows that each of the solutions 

can provide protection against a specific attack and are not 

able to provide a general and integrated protection solution, 

and the parallel use of several solutions at the same time will 

create a lot of overheads in packet processing and routing in 

the network. 

In [15], the authors have provided a solution for the 

integrity and authentication of the entire network traffic by 

implementing IPSec in SDN, which results in reducing the 

risk of unauthorized access and data manipulation. 

In summary, the literature review shows ongoing efforts 

in the research community to increase SDN network speed 

and security through various techniques. While separate 

studies have investigated the benefits of DPDK and IPsec in 

isolation, there is a growing interest in exploring the 

combined use of solutions and technologies to exploit their 

synergy together in speed and security in SDN networks. . 

The integration of IPsec into the DPDK-based packet 

processing path, along with the use of VPP for optimal 

routing, provides a promising approach to achieve high-

performance and secure SDN deployment. However, further 

research is needed to explore the practical implications, 

performance trade-offs, and deployment challenges 

associated with such an integrated solution. 

3. Proposed Technologies 

3.1. Data Plane Development Kit (DPDK) 

DPDK is a set of libraries and drivers designed for high-

performance packet processing in user space. Key design 

goals include minimizing CPU overhead, bypassing 

conventional kernel-based network stacks, and ensuring 

deterministic packet processing latency. DPDK implements 

memory management mechanisms that facilitate low-

latency and zero-copy packet handling. The underlying 

memory architecture relies on several key components: 

a. Huge Pages and Physical Address Contiguity: 

By using huge pages (commonly 2MB or 1GB), DPDK 

ensures large contiguous memory segments, reducing the 

Translation Lookaside Buffer (TLB) overhead and 

minimizing page walks. The large contiguous memory areas 

help maintain a stable memory mapping and lower the CPU 

instruction overhead for address translation. Evidence based 

evaluations have shown that fewer TLB misses translate 

directly into improved packet throughput [1, 15]. 

Formally, the number of pages 𝑁𝑝 required for a memory 

size M given a page size 𝑆𝑝 is: 

𝑁𝑝 =
𝑀

𝑆𝑝
    (1) 

 

In Table 1, you can see the difference in the number of 

pages for 256 GB memory space: 

Table 1. Comparison of the number of memory pages using Huge Pages 

Page Size 1 GB 2 MB 4 KB 

Number of Pages 256 131,072 67,108,864 

 

To quantify memory efficiency, consider the effective 

latency 𝐿𝑒𝑓𝑓  of memory access: 

 

𝐿𝑒𝑓𝑓  ≈ 𝐿𝑏𝑎𝑠𝑒+𝑃𝑚𝑖𝑠𝑠×𝐿𝑚𝑖𝑠𝑠  (2) 

 

where 𝐿𝑏𝑎𝑠𝑒  is the base latency, 𝑃𝑚𝑖𝑠𝑠 is the probability of 

a TLB miss, and 𝐿𝑚𝑖𝑠𝑠 is the penalty incurred. By leveraging 

huge pages, DPDK minimizes 𝑃𝑚𝑖𝑠𝑠, thereby reducing 𝐿𝑒𝑓𝑓  

and improving packet processing speed. This reduction in 

complexity and latency can be crucial for applications like 

IPsec, where even slight overheads in memory access 

translate into higher per-packet processing times. 

                                                           
* Secure Sockets Layer 

 Within DPDK: Because huge pages are pre-

allocated and contiguous, the time needed to 

perform address translation per memory access is 

reduced, maintaining stable and predictable 

performance. 

 Outside DPDK: Conventional memory allocations 

rely on smaller pages and may involve complex 

page table structures. This can increase TLB misses 

and lead to non-deterministic memory access times. 

b. Non-Uniform Memory Access (NUMA)-Aware 

Allocation:  

DPDK is aware of Non-Uniform Memory Access 

(NUMA) topologies and guides memory allocations to the 

memory node local to the CPU core. It uses a memory pool 
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represntation per NUMA node, ensuring that each core 

accesses memory from the nearest NUMA node, minimizing 

remote memory access: 

 

Allocation(𝑐𝑜𝑟𝑒𝑐)→ 𝑚𝑒𝑚𝑝𝑜𝑜𝑙 𝑁𝑈𝑀𝐴(𝑐𝑜𝑟𝑒𝑐) 

 

This ensures remote memory accesses are minimized, 

improving latency effeciency and maintaining consistent 

performance [15]. 

 

Figure 1. Side-by-side comparison of NUMA and non-NUMA architectures 

 

 Within DPDK: NUMA-awareness ensures near-

constant and effecient memory access latency by 

minimizing remote node memory calls. 

 Outside DPDK: Generic systems often do not 

control or optimize memory placement. Memory 

allocated without NUMA-awareness may reside in 

remote nodes, increasing latency and reducing 

throughput under heavy loads. 

d. Zero-Copy Data Transfer: 

DPDK uses zero-copy techniques to avoid unnecessary 

copying of data between buffers. Traditional packet 

processing often involves multiple steps in which data is 

copied from one buffer to another, creating significant 

overhead. Zero-Copy techniques ensure that data is copied 

directly from disk to sockets, without entering core buffers, 

reducing the CPU cycles required to copy data and thus 

improving performance. This feature minimizes memory 

copy overhead and these optimizations offload the CPU 

from basic I/O operations, which is useful when handling 

large volumes of encrypted traffic  [16] 

 Within DPDK: Packets arrive directly into pre-

allocated mbufs, and encryption/decryption (for 

IPsec) can be offloaded. There is no repeated 

copying at various layers, reducing CPU cycles and 

kernel intruptions lead into improving throughput. 

 Outside DPDK: Traditional stacks may copy packet 

data multiple times (e.g., from kernel to user space). 

Such overhead is non-constant and increases 

latency per packet as network load grows. 

c. Direct Memory Access (DMA): 

                                                           
* Direct Memory Access 

DPDK uses DMA to transfer data directly between the 

network interface card (NIC) and program memory without 

CPU intervention. This frees up data transfer tasks to the 

direct memory access control section of the CPU for other 

processing tasks and reduces latency by avoiding CPU 

interrupts. DPDK's use of DMA* reduces CPU overhead and 

increases data transfer speed, which is critical for effective 

handling encryption/decryption of data packet security 

protocols such as IPsec. [17] 

 

e. Memory Pools (Mempools) and mbufs: 

DPDK’s rte_mempool structure pre-allocates a pool of 

fixed-size buffers (mbufs) at startup. This approach 

eliminates frequent dynamic memory allocations at runtime. 

Each mbuf (encapsulated in a structure rte_mbuf) holds both 

packet metadata and data pointers. The fixed-size pre-

allocation and pool-based recycling of buffers ensure 

constant-time buffer allocations and deallocations: 

 

𝑇𝑎𝑙𝑙𝑜𝑐(mbuf) ≈ O(1),   𝑇𝑓𝑟𝑒𝑒(mbuf) ≈ O(1) 

 

This deterministic behavior is critical for maintaining 

low-latency and high-throughput packet processing. [18, 19] 

 

 Within DPDK: Because mbufs are pre-allocated 

and managed in fixed-size pools, allocation and 

deallocation involve simple pointer operations on 

lock-free rings, ensuring that each allocation or 

deallocation  operation does not scale with the 

number of buffers already handled. 



Tabatabaei Manesh et.al 

 142 

 Outside DPDK: Standard dynamic memory 

allocators (e.g., malloc/free) cannot guarantee 

constant-time complexity, as they often must 

manage variable-sized requests, coalescing, and 

complex metadata. This complexity leads to non-

constant (potentially O (log 𝑛) or worse) 

allocation/free operations, degrading performance 

under load. 

 

f. Local Caches and Bulk Operations: 

Each core maintains a local cache of mbufs to further 

reduce overhead associated with accessing the global 

Mempool. Bulk allocation and deallocation operations 

further extinguish the cost of handling buffers by operating 

on multiple objects simultaneously. Such bulk operations 

can be expressed as: 

 

BulkAlloc(k)→O(1) 

 

for a batch of k buffers, significantly reducing per-buffer 

overhead. 

 

Similar to mbuf allocation and deallocation, bulk 

operations (allocating or freeing multiple mbufs at once) are 

also near O(1) per operation since they amortize the 

overhead over multiple objects, further enhancing 

throughput. [18, 19] 

 

g.  Lockless Data Structures: 

In multi-threaded processing, a lock is a synchronization 

mechanism used to control access to shared resources and 

ensure that only one thread can access a resource at a time. 

When a thread holds a lock, other threads that need access to 

the same resource must wait for the lock to be released, 

which can cause delays and reduce overall system 

performance. 

DPDK uses lock-free data structures for memory 

management, which allows multiple CPU cores to 

simultaneously access and modify memory pools without 

the overhead of locking mechanisms. This is critical for 

achieving high performance in multi-core systems, as it 

avoids the latency associated with locking. [20-22]   

 

 Within DPDK: The ring-based lockless approach 

ensures multi-core scalability. Each operation 

(enqueue/dequeue) is independent of how many 

items are already in the ring. 

 Outside DPDK: Traditional locks may introduce 

waiting times that scale poorly as more threads and 

CPU cores compete for shared resources. 

 

h. Additional Memory and Buffer Optimization 

Features:  

DPDK also provides packet burst APIs 

(e.g., rte_eth_rx_burst(), rte_eth_tx_burst()) to fetch and 

send multiple packets at once. This reduces the overhead of 

per-packet function calls and enhances instruction cache 

locality. Prefetch instructions are extensively used within the 

data path (e.g., rte_prefetchX()) to fetch upcoming packet 

metadata into caches before processing, reducing CPU 

pipeline stalls. 

 

DPDK Security Library:  

The librte_cryptodev in DPDK abstracts hardware and 

software cryptographic accelerators, providing a unified 

interface for cryptographic operations such as encryption, 

decryption, hashing, and authentication. The cryptodev 

library: 

 

 Defines a common API and data-path programming 

model for crypto operations. 

 Supports both dedicated hardware solutions (e.g., 

Intel QuickAssist adapters) and CPU-based 

cryptographic extensions (e.g., AES-NI, ARMv8 

crypto extensions) 

 Uses a queue-based model to 

submit rte_crypto_op structures for batch 

processing. A rte_crypto_op encapsulates all 

necessary cryptographic operation parameters, 

keys, and buffer pointers. 

 Allows asynchronous processing of cryptographic 

jobs, enabling pipelines where packet input/output, 

cryptographic, and other processing stages run 

concurrently. [23, 24] 

 

Conceptually, the cryptodev subsystem can be modeled 

as: 

 

Crypto Input                                  Crypto Device                                  Processed Packets 

 

Completion rte_crypto_op 
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This model decouples the cryptographic transformations 

from the main application logic, enabling easy offloading of 

IPsec operations and ensuring minimal performance penalty 

for security. 

 Within DPDK: Cryptodev integration with IPsec 

leads to highly efficient cryptographic 

transformations, often processed in batches and 

offloaded seamlessly to hardware accelerators. 

 Outside DPDK: Without cryptodev, implementing 

high-throughput IPsec would require custom 

integration of cryptographic engines, often 

incurring context switches, synchronization 

overhead, and variable processing times. 

Integration with IPsec: 

DPDK’s cryptodev library forms the backbone of IPsec 

acceleration. The IPsec protocol stack can leverage the 

cryptodev APIs to perform Encryption/Authentication (e.g., 

AES-GCM) on packets inline or via a simple offload model. 

When combined with DPDK’s zero-copy and DMA-based 

operations, cryptodev ensures cryptographic transformations 

do not become a bottleneck. 

 

3.2. Internet Protocol Security (IPSec) 

As mentioned, IPsec is a set of protocols designed to 

ensure the confidentiality and integrity of data 

communications in IP networks. This is possible through 

two main protocols; Authentication Header (AH), which 

provides only authentication, and Encapsulating Security 

Payload (ESP), which provides both authentication and 

packet confidentiality. These protocols can work either in 

transport mode, where only the original data is encrypted and 

the IP data remains intact, or in tunnel mode, where the entire 

original IP packet (including the IP data and the original 

data) is encrypted and packed into a new IP packet. The 

choice of these protocols depends on the security 

requirements of the network. [25]. 

IPsec thus provides comprehensive end-to-end security at 

the network layer, ensuring that sensitive information 

remains protected regardless of the underlying applications 

or services. 

In the SDN-based, high-performance architecture 

proposed, IPsec is not only an added feature—it’s a strategic 

choice that complements both DPDK’s acceleration 

capabilities and VPP’s modular, vectorized packet 

processing. By applying cryptographic safeguards at the IP 

layer, IPsec delivers strong security uniformly across all 

network functions without requiring application-specific 

solutions. This uniformity is critical in a modern SDN 

environment where policies must be administrated centrally 

yet spreed consistently to all data plane elements. [26] [27] 

Key reasons and benefits for integrating IPsec into this 

framework include: 

 

a. Uniform Security Policy Enforcement: 

 IPsec ensures that all traffic, regardless of 

application or service, is subject to the 

same security controls. 

 This uniformity simplifies network 

management by centralizing policy 

definition at the SDN controller, ensuring 

consistent enforcement across diverse 

endpoints and network segments. 

 

b. Synergy with DPDK for High Performance: 

 Leveraging DPDK’s cryptographic 

acceleration (via the cryptodev library) 

minimizes the performance overhead 

typically associated with encryption and 

authentication tasks.  

 Hardware offloads and zero-copy 

buffering keep latency low and throughput 

high, ensuring that security does not 

become a bottleneck. 

 

c. Scalability and Adaptability in SDN: 

 As SDN controllers dynamically adjust 

network flows, IPsec policies can be 

updated on-the-fly, maintaining secure 

channels in line with evolving operational 

requirements. 

 This capability ensures that as new routes 

are provisioned or old ones are 

reconfigured, the confidentiality and 

integrity of data remain uncompromised. 

d. Reduced Complexity and Dependency on 

Specialized Hardware: 

 Instead of relying on dedicated encryption 

devices or specialized security appliances, 

IPsec-enabled packet processing can be 

implemented on servers running the SDN 

data plane. 

 This approach cuts down on complexity, 

reduces hardware acquisition costs, and 
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allows rapid scaling or re-deployment of 

security functions as the network grows or 

changes. 

 

e. Interoperability and Industry Support: 

 IPsec is widely recognized, standardized, 

and supported across networking 

equipment and vendor solutions. 

 Using IPsec eases integration with 

existing infrastructure, partner networks, 

and cloud services that already rely on 

these well-understood security protocols. 

 

f. Sustained High Throughput Under 

Cryptographic Load: 

 With DPDK handling the packet I/O 

efficiently and VPP optimizing packet 

processing workflows, IPsec 

encryption/decryption functions can be 

performed at near line-rate speeds. 

 The architecture can handle heavy traffic 

loads, multiple tunnels, and a wide variety 

of topologies without significant 

degradation in performance. 

 

g. Seamless Integration with VPP: 

 IPsec nodes can be incorporated into the 

VPP processing graph, enabling 

vectorized operations and batch 

processing of encrypted flows. 

 This integration ensures that packet 

processing, from ingress to secure 

encapsulation to forwarding, occurs 

smoothly within a single, unified pipeline. 

 

3.3. Vector Packet Processing (VPP)  

VPP is an open-source, high-performance packet 

processing engine that applies vectorization principles to 

packet operations. Rather than processing one packet at a 

time (scalar processing), VPP processes batches (vectors) of 

packets through a directed graph of processing nodes to 

minimize instruction cache misses and improve throughput. 

Each node applies a specific function to the entire vector 

before moving on [28]. 

Key Architectural Elements of VPP: 

a. I-Cache Efficiency and Vectorization: 

In scalar processing, each packet may cause new 

instructions to load into the CPU’s instruction cache (I-

cache), increasing the probability of I-cache thrashing. With 

vector processing, the CPU executes the same instructions 

on multiple packets consecutively, significantly reducing 

instruction cache misses. Once the I-cache is “warm” for the 

first packet in the vector, subsequent packets in that vector 

get the benefit: 

 

Processing(𝑉𝑝𝑘𝑡𝑠) = ∑ 𝑓(𝑝𝑎𝑐𝑘𝑒𝑡𝑖)
|𝑉𝑝𝑘𝑡𝑠|

𝑖=1
 with reduced per-packet overhead. (3) 

 

b. Graph-Based Extensibility: 

VPP models the data plane as a graph G=(V,E), where 

each node v∈V in the graph represents a distinct feature or 

function (e.g., L2 input, IP4 input, IPsec tunnel input) and 

Edges e∈E represent how packets flow between features. 

Packets traverse nodes as edges dictate. This modular 

structure allows easy insertion of new features (e.g., IPsec 

nodes) or hardware offload blocks: 

 

G=(V,E): Each v∈V is a function; edges E define flow o

f packets. 

 

c. Parallelism and Scalability: 

VPP exploits multi-core CPU architectures by 

distributing graph nodes across threads and cores. Combined 

with DPDK’s lockless memory structures, VPP can scale 

linearly with CPU cores: 

 

 Within DPDK: The synergy of vectorized 

packet processing with pre-allocated 

mbufs and zero-copy techniques improves 

throughput and latency stability. 

 Without DPDK: Other packet processing 

frameworks may not achieve such 

efficient vectorization or may rely on 

kernel-based stacks causing unpredictable 

latency and lower throughput. 

 

d. Integration with IPsec: 

Integrating IPsec within VPP’s graph nodes (e.g., ESP 

encapsulation/decapsulation nodes) ensures that 



 Management Strategies and Engineering Sciences: 2024; 6(5):138-151 

 

 145 

cryptographic transformations occur inline and benefit from 

vectorization. Leveraging DPDK’s cryptodev library, VPP 

can offload cryptographic operations and process packets in 

batches, reducing overhead per packet and maintaining 

stable line-rate performance even under encryption-

intensive workloads  

 

This vectorized architecture substantially reduces CPU 

pipeline stalls and I-cache thrashing, making VPP 

particularly suitable for high-throughput, low-latency 

networking functions required in advanced SDN 

deployments. When combined with DPDK’s underlying fast 

I/O and IPsec hardware acceleration, VPP enables a highly 

modular, scalable, and efficient software-based networking 

stack [29-33]. 

 

The following is architectural view of the VPP layer. [32] 

 

 

Figure 2. VPP Layers 

VPP Infra:  

The infrastructure layer of VPP, which contains the 

source code of the kernel library. This layer performs 

memory operations, works with vectors and loops, performs 

key lookups in tables, and works with timers to dispatch 

graph nodes. 

VLIB (Vector Library): 

The VLIB is at the core of VPP. It provides fundamental 

data structures (vectors, hash tables, memory allocators), 

scheduling routines for graph nodes, and thread 

management. The vector abstraction reduces I-cache 

thrashing by ensuring that the CPU repeatedly executes the 

same sequence of instructions on a batch of packets before 

moving to another node. 

VNET (VPP Network Stack): 

The VNET layer builds on VLIB and provides network-

specific functionalities: IP routing, switching, and session 

management. It interacts closely with DPDK for fast I/O and 

can integrate IPsec processing nodes that rely on cryptodev 

accelerators. 

Plugins and Extensibility: 

VPP supports plugins that can introduce new graph nodes 

or modify existing ones. For IPsec, there are dedicated 

plugin nodes handling ESP encapsulation/decapsulation. 

These nodes invoke cryptodev-like interfaces to offload 

cryptographic tasks if available. 

4. Proposed System Architecture  

The proposed system architecture leverages DPDK for 

accelerated packet I/O and cryptographic offloads, integrates 

IPsec security features for data confidentiality and integrity, 

and employs VPP’s vectorized packet processing to 

maintain high throughput at scale. An SDN controller 
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provides centralized logic for dynamic policy adjustments, 

key management, and network configuration. The 

combination of these technologies ensures secure, flexible, 

and performant traffic handling suitable for modern SDN 

environments. 

At a high level, the data plane—composed of DPDK and 

VPP—handles packets entirely in user space. This 

eliminates kernel-based context switching, interuptions and 

overhead, achieving near line-rate processing even under 

cryptographic loads. The control plane—managed by an 

SDN controller—enforces IPsec policies, updates Security 

Associations (SAs), and manage VPP graph configurations 

in real-time, enabling dynamic adaptation to changing 

network conditions. Each component plays a specialized 

role: 

Table 2. Proposed System Architect Component Relationship 

Component Role Dependency 

SDN Controller  Policy and rule management VPP 

VPP Dynamic routing and IPsec setup DPDK, SDN Controller 

DPDK Fast packet I/O and encryption CryptoDev, NICs 

CryptoDev IPsec encryption and decryption DPDK 

NICs Physical packet transmission DPDK 

 

Figure 3. Proposed system Architect Diagram 

4.1. System Data Flow 

The following outlines the end-to-end flow of a packet 

through the system: 

 

1. Packet Ingress: Packets arrive at a DPDK-enabled 

NIC and are received directly into mempools using 

the Poll Mode Driver (PMD). This bypasses the 

kernel, eliminating interrupt-driven overhead. 

2. IPsec Processing: Packets requiring encryption or 

decryption are handed to CryptoDev for IPsec 

transformations: 

 The IPsec policies and Security 

Associations (SAs) are defined and secure 

IPsec tunnels established and maintain by 

using the IKEv2 protocol. 

 CryptoDev performs encryption (e.g. 

AES-GCM) or decryption based on these 

policies. 

 

3. Routing and Switching (VPP): VPP retrieves the 

encrypted/decrypted packets and processes them 

through a graph of nodes. The VPP IPsec 

nodes integrate with CryptoDev to offload 

cryptographic operations efficiently. 

4. Dynamic Control: The SDN Controller interfaces 

with VPP and IPSec to: 

 Update IPsec policies and cryptographic 

keys dynamically. 
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 Modify VPP graph configurations to adapt 

to real-time network changes. 

 

5. Packet Egress: VPP forwards the processed 

packets back to DPDK, which transmits them 

through the NIC to the next hop. 

 

This pipeline ensures minimal latency and efficient 

utilization of CPU and hardware resources. 

4.2. Key Components  

4.2.1. DPDK: High-Performance Packet Processing 

DPDK is the foundation for the data plane, enabling zero-

copy, user-space packet processing. 

Key Features: 

1. Poll Mode Driver (PMD): 

 Captures packets directly from the NIC, 

bypassing the kernel to reduce latency. 

 Processes packets using a continuous 

polling mechanism, eliminating 

interrupts. 

2. Memory Management: 

 Mempools: Pre-allocated memory pools 

for packet buffers. 

 Huge Pages: Uses large memory pages (2 

MB) to reduce TLB misses and improve 

memory access speed. 

3. CryptoDev Library: 

 Provides an interface for offloading 

encryption/decryption tasks to hardware 

accelerators. 

 Ensures encryption mrthods for IPsec is 

performed at line rate. 

4.2.2. IPsec: Secure Communication 

IPsec ensures data confidentiality, integrity, and 

authentication at the network layer. It is selected for its 

modular design, compliance with IKEv2 standards, and 

support for hardware acceleration to enhance performance. 

Key Features: 

1. IKEv2 Daemon: 

 Negotiates secure IPsec tunnels between 

endpoints. 

 Manages key exchanges and tunnel 

lifetimes. 

2. ESP (Encapsulating Security Payload): 

 Encrypts and authenticates packet 

payloads, commonly using different 

algorithm (e.g. AES-GCM) for both 

encryption and integrity. 

3. Integration with DPDK: 

 Utilizes DPDK’s CryptoDev for 

hardware-accelerated encryption. 

 Interfaces with VPP through tap interfaces 

to ensure efficient packet processing and 

routing. 

 

4.2.3. VPP: Dynamic Routing and Switching 

VPP is responsible for routing and switching packets 

efficiently. 

Key Features: 

1. Graph-Based Processing: 

 Packet flows are processed through 

modular graph nodes, each performing a 

specific function (e.g., IPsec processing, 

routing). 

2. IPsec Tunnel Management: 

 VPP applies IPsec tunnels and manages 

packet forwarding dynamically. 

3. Interface Management: 

 VPP supports physical interfaces (e.g., 

NICs) and virtual interfaces 

like tap devices. 

 

4.3. Implementation Approach 

The implementation is divided into three key stages: 

1. System Initialization and Configuration: 

 Setting up DPDK to handle packet ingress 

and egress efficiently. 

 Configuring CryptoDev for hardware-

accelerated IPsec operations. 

 Initializing VPP to manage routing, 

switching, and tunnel configurations. 

2. Packet Processing Pipeline: 

 Ingesting packets from NICs using 

DPDK's Poll Mode Drivers (PMD). 

 Encrypting or decrypting packets with 

IPsec through CryptoDev. 

 Routing packets dynamically using VPP 

based on SDN controller policies. 
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3. Performance Tuning and Optimization: 

 Fine-tuning buffer sizes, queue depths, 

and other system parameters to handle 

high throughput. 

 Implementing parallelism across cores for 

scalability. 

 

4.4. Important Configuration and Code Details 

This section provides essential configurations and code 

snippets. It highlights the parameters critical for replication 

and execution. 

4.4.1. DPDK Initialization Code 

The following code initializes the DPDK environment 

and configures memory pools and network interfaces. 

// Initialize Environment Abstraction Layer (EAL) 

int ret = rte_eal_init(argc, argv); 

if (ret < 0) { 

    rte_exit(EXIT_FAILURE, "EAL initialization 

failed\n"); 

} 

 

// Memory Pool for Packet Buffers 

struct rte_mempool *mbuf_pool = 

rte_pktmbuf_pool_create( 

    "MBUF_POOL", 8192, 250, 0, 

RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id() 

); 

if (mbuf_pool == NULL) { 

    rte_exit(EXIT_FAILURE, "Cannot create memory 

pool\n"); 

} 

 

// Configure NIC Ports 

uint16_t port_id; 

RTE_ETH_FOREACH_DEV(port_id) { 

    struct rte_eth_conf port_conf = { 

        .rxmode = { .max_rx_pkt_len = 

RTE_ETHER_MAX_LEN }, 

    }; 

    rte_eth_dev_configure(port_id, 1, 1, &port_conf); 

    rte_eth_rx_queue_setup(port_id, 0, 512, 

rte_eth_dev_socket_id(port_id), NULL, mbuf_pool); 

    rte_eth_tx_queue_setup(port_id, 0, 512, 

rte_eth_dev_socket_id(port_id), NULL); 

    rte_eth_dev_start(port_id); 

} 

Parameter Descriptions: 

 rte_pktmbuf_pool_create: 

o "MBUF_POOL": Name of the memory 

pool. 

o 8192 (NUM_MBUFS): Number of 

buffers in the pool. Should match packet 

throughput to avoid dropping packets. 

o 250 (MBUF_CACHE_SIZE): Number of 

buffers cached per core to reduce 

mempool access overhead. 

o RTE_MBUF_DEFAULT_BUF_SIZE (2

048): Size of each buffer. This must 

account for packet size + headers. 

 rte_eth_rx_queue_setup / rte_eth_tx_queue_set

up: 

o 512: Queue size. Challenge: Queue size 

must match traffic burst size to avoid 

packet drops or excessive latency. 

4.4.2. CryptoDev Configuration for IPsec 

 

// Configure Crypto Device 

struct rte_cryptodev_config dev_conf = { 

    .socket_id = rte_socket_id(), 

    .nb_queue_pairs = 2, // Supports parallelism 

}; 

rte_cryptodev_configure(crypto_dev_id, &dev_conf); 

 

// Configure IPsec Cipher and Authentication 

struct rte_crypto_sym_xform cipher_xform = { 

    .type = RTE_CRYPTO_SYM_XFORM_CIPHER, 

    .cipher = { 

        .algo = RTE_CRYPTO_CIPHER_AES_GCM, 

        .key.length = 32, // AES-256 

    }, 

}; 

 

struct rte_crypto_sym_xform auth_xform = { 

    .type = RTE_CRYPTO_SYM_XFORM_AUTH, 

    .auth = { 

        .algo = RTE_CRYPTO_AUTH_SHA256_HMAC, 

        .key.length = 32, // 256-bit HMAC 

    }, 

}; 

 

// Link Cipher and Auth 
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cipher_xform.next = &auth_xform; 

Parameter Descriptions: 

 rte_cryptodev_config: 

o socket_id: NUMA-aware placement of 

cryptographic operations. 

o nb_queue_pairs: Number of queue pairs. 

This enables parallel processing of crypto 

tasks across cores. 

 RTE_CRYPTO_SYM_XFORM_CIPHER / RT

E_CRYPTO_SYM_XFORM_AUTH: 

o RTE_CRYPTO_CIPHER_AES_GCM: 

AES-GCM is chosen for efficiency as it 

combines encryption and integrity. 

o key.length: Key size (32 bytes = 256-bit) 

ensures strong security. 

 

4.4.3. VPP Configuration for Routing and IPsec 

bash 

Copy code 

# VPP Tap Interface 

vppctl create tap id 0 host-if-name vpp-tap0 

vppctl set int state tap0 up 

vppctl set int ip address tap0 10.0.0.1/24 

 

# IPsec Tunnel Configuration 

vppctl ipsec add tunnel src 10.0.0.1 dst 192.168.1.1 local-

spi 100 remote-spi 200 crypto-alg aes-gcm-256 integ none 

vppctl set interface state ipsec0 up 

 

# Static Route Configuration 

vppctl ip route add 192.168.2.0/24 via 10.0.0.2 tap0 

Parameter Descriptions: 

 create tap id 0 host-if-name vpp-tap0: 

o id 0: Tap interface ID. 

o vpp-tap0: Interface name visible to the 

host. Challenge: Interface names must not 

conflict with existing interfaces. 

 ipsec add tunnel: 

o src / dst: Source and destination IP 

addresses for the IPsec tunnel. 

o local-spi / remote-spi: Security Parameter 

Indexes (SPI) for the tunnel. These values 

must match on both endpoints. 

o crypto-alg aes-gcm-256: Specifies AES-

GCM for combined encryption and 

integrity. 

o integ none: GCM already provides 

integrity, so no additional algorithm is 

needed. 

 ip route add: 

o 192.168.2.0/24: Remote subnet routed 

through the IPsec tunnel. 

o via 10.0.0.2: Next-hop address. 

SPI mismatches or incorrect routes can result in dropped 

packets or failed tunnel setups. 

Each code snippet above plays a critical role in building 

a high-performance, secure SDN network. Key challenges 

include: 

1. Resource Allocation: Ensuring sufficient 

hugepages, memory pools, and NIC queues. 

2. CryptoDev Hardware Support: Hardware 

acceleration must be enabled to achieve optimal 

IPsec performance. 

3. VPP Tunnel Integrity: SPI values, encryption 

algorithms, and routes must align between 

endpoints. 

4. NUMA Optimization: Cores, memory, and NIC 

placement must be NUMA-aware to reduce 

latency. 

 

Use-Case Scenarios and future AI approach 

Here are practical examples of how the system operates 

in real-world scenarios: 

1. Secure Communication Between Data Centers: 

 Traffic between two data centers is 

encrypted using IPsec tunnels. 

 DPDK handles the high-throughput data 

plane, and VPP dynamically routes the 

traffic based on SDN policies. 

2. Dynamic Policy-Based Routing: 

 The SDN Controller updates flow rules in 

real time (e.g., due to congestion or a 

DDoS attack). 

 VPP immediately adapts and reroutes 

traffic without interrupting packet flow. 

3. High-Performance Firewall: 

 Incoming packets are inspected, 

encrypted/decrypted (using CryptoDev), 

and forwarded efficiently by VPP through 

DPDK. 

Artificial intelligence approaches to achieve network 

security in SDN networks 

The application of artificial intelligence (AI) and machine 

learning (ML) techniques to SDN environments is gaining 
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momentum as network operators seek more dynamic, 

autonomous, and robust solutions. AI-driven strategies can 

enable real-time analysis of traffic patterns, predictive 

modeling of network conditions, and automated decision-

making to enhance both performance and security. 

Studies have demonstrated the effectiveness of AI-driven 

methods for optimizing routing and load balancing within 

SDN. For example, work in [34] employed reinforcement 

learning to leverage real-time feedback from the network, 

dynamically adjusting paths and improving throughput. By 

periodically evaluating network conditions, the controller 

can determine when and how to reroute traffic, thus 

improving resilience and efficiency. Similarly, the authors in 

[35] utilized Q-learning to improve data transmission rates 

in SDN scenarios. Their approach tested single-metric and 

multi-metric variants of Q-Routing algorithms, revealing 

that single-metric Q-Routing significantly outperformed 

traditional heuristic-based routing in both static and dynamic 

topologies, while also converging faster than shortest-path 

(K-Shortest Path) algorithms. 

These findings indicate that employing AI within SDN 

can substantially enhance network performance and 

intelligence. By integrating such AI-based routing and 

decision-making mechanisms with the secure, high-

throughput architecture proposed in this paper—where SDN 

is fortified by DPDK, IPsec, and potentially VPP—network 

operators can ensure that optimization and security operate 

in tandem. As future research continues to refine AI 

techniques and incorporate more metrics, the fusion of AI-

based decision engines with secure, high-speed SDN 

frameworks may set a new standard for both performance 

and protection. 

5. Conclusion 

This paper presents a conceptual integration of IPsec, 

DPDK, and VPP within an SDN architecture, aiming to 

achieve both high-performance packet handling and 

stringent security measures. The technologies discussed 

exhibit well-documented capabilities that strongly suggest 

synergistic gains. DPDK, by bypassing the kernel and 

employing advanced memory management techniques, 

delivers line-rate packet processing essential for sustaining 

high throughput in increasingly complex networks. IPsec, 

integrated through hardware-accelerated cryptodev 

interfaces, ensures robust end-to-end data protection without 

imposing prohibitive overheads. 

VPP contributes an additional layer of agility and 

scalability, allowing for the seamless introduction of custom 

routing and switching functionalities. When managed by a 

centralized SDN controller, the resulting framework 

maintains low latency, secure operations, and dynamic 

adaptability. This aligns well with evolving network 

demands, where rapid response to changing traffic 

conditions and threat landscapes is critical. 

Future empirical validations, performance benchmarks, 

and expanded AI-driven routing approaches can further 

refine and solidify this integrated solution. As research and 

development progress, the combined strengths of SDN, 

IPsec, DPDK, and VPP stand to shape next-generation 

networking paradigms, optimizing for both efficiency and 

security across diverse and distributed environments. 
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