
Management Strategies and Engineering Sciences 2025; 7(1):34-55

© 2025 The author(s). Published By: The Research Department of Economics and Management of Tomorrow's Innovators. This is an open

access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

Review Article

Software Failure Prediction Based on Game Theory and

Convolutional Neural Network Optimized by Cat Hunting

Optimization (CHO) Algorithm

Azam Ghaedi1 , Amid Khatibi Bardsiri2 * , Mehdi Jafari Shahbazzadeh3

1.PHD Student, Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.

2.Assistant Professor, Department of Computer Engineering, Bardsir Branch, Islamic Azad University, Kerman, Iran (Corresponding author).

3.Assistant Professor, Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.

* Corresponding author email address: a.khatibi@srbiau.ac.ir

Received: 2024-12-03 Reviewed: 2025-01-01 Revised: 2025-01-11 Accepted: 2025-01-20 Published: 2025-03-29

Abstract

Predicting the failure of software projects in the stages of software production reduces the losses of software companies.

Deep learning methods are an efficient tool for software failure prediction. Imbalance of data sets, intelligent feature

selection, and accurate deep learning techniques are among the challenges of deep learning methods for accurate software

failure prediction. This manuscript presents an improved game theory method based on the Generative adversarial (GAN)

network to predict software failure and success. In the second stage, the cat-hunting algorithm is used to select features and

reduce the dimensions of the samples. The dimensionally reduced samples are converted into RGB color images in the third

step. RGB images are used for convolutional neural network(CNN) training. The advantage of the proposed method is to

intelligently select the feature, reduce the input of the CNN neural network, and simultaneously balance the training samples

with game theory to increase the accuracy of the prediction model. In this manuscript, the NASA dataset is used to predict

the failure of software projects. The accuracy of the proposed method (GCV) in predicting the failure of software projects

is equal to 96.69%. The GCV method is more accurate in predicting the failure of software projects than the LSTM and

VGG16 methods. The proposed method is more accurate in feature selection than Chi, IG, and ReF WOA, HHO, and JSO

algorithms methods.

Keywords: Software failure prediction, Feature selection, Cat Hunting algorithm, GAN, SMOTE, CNN.

How to cite this article:
Ghaedi A, Khatibi Bardsiri A, M, Jafari Shahbazzadeh M. (2025). Software Failure Prediction Based on Game Theory and Convolutional

Neural Network Optimized by Cat Hunting Optimization (CHO) Algorithm. Management Strategies and Engineering Sciences, 7(1), 34-

55.

http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0003-1408-5941
https://orcid.org/0009-0005-0619-2028
https://orcid.org/0000-0002-1443-9730

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 35

1. Introduction

Many software projects are offered in the very complex

and modern world today. Complex and modernized software

is done during the engineering process of software

production. It takes a lot of money to produce complex

software. Big software projects are developed by big

companies [1]. Many software projects succeed by spending

much money, and some projects have defects [2]. Failure to

achieve predetermined software production goals is

considered software project failure [3]. In some software

projects, project failure costs millions of dollars [4].

With the complexity of software design, ensuring the

software's reliability is very important [5]. A lot of testing

and debugging is running to design a reliable software

engineering project. One of the challenges of traditional

approaches to predicting the failure of software projects is

the time-consuming process [6]. Another challenge of these

methods is that the software must be completed and tested.

Creating a software project that ultimately leads to failure

can cost software production companies much [7]. A

suitable approach is to predict the success or failure of the

project at the time of software production [8]. Predicting the

failure of a software project in the early stages will prevent

software development companies from spending money, and

time will be well spent. Another advantage of predicting the

success or failure of software projects at each stage of project

development is that the factors leading to failure can be

recognized [9].

Software defect prediction is a technique to improve

software quality and reduce software testing costs with

predictive methods such as machine learning [10] and deep

learning [11]. Many software companies use prediction

methods to predict success in customer satisfaction and save

software production costs [12]. Software defect prediction is

a vital component of the life cycle process of application

software development [13]. Anticipating software defects

makes it possible to quickly provide customers with high-

quality and low-cost software. At each stage of software

production, a quality software product can be provided by

predicting the success of the goals. Many companies

producing software are inclined to predict software defects

at the very early stages of software development to maintain

the quality of the software for customer satisfaction and save

the cost of testing [14].

 Software effort estimation is considered a primary

activity in software project management. Software failure

prediction is one of the tools for estimating effort in software

development [15]. Studies show that many software defects

are due to inappropriate project management methods.

Various factors contribute to the failure of a software project,

including unrealistic and unexpected goals for the project,

incorrect estimation of required resources, incorrect

definition of requirements, poor reporting of project

development, and poor communication between the

programming team. , poor communication between

developers and users, poor technology, inability to manage

the programming team, use of non-standard development

methods, little experience of the programming team, and

lack of cost measurement [1, 4].

Project effort estimation includes estimating software

development's size, effort, cost, time, and staffing. The

product's success or failure is often estimated at the initial

stage of any software development project. Predicting a

software project's failure or success is considered an activity

in estimating the software effort to complete a project [16].

Estimates show that many software projects fail, and this

issue imposes a significant loss on software developers [17].

Predicting the failure of a software project is essential and

necessary because it produces reliable and quality software

[18]. Predicting the defeat or success of a software project

with prediction methods such as machine learning and deep

learning, unlike traditional approaches, requires less time

and cost [18].

Machine learning and deep learning methods play an

essential role in predicting the failure of software projects.

Learning methods create a classification or prediction model

through the training process, which is used to predict the

success or failure of software projects. Machine learning

methods such as SVM [19], neural network [20], decision

tree [21], random forest [22], and regression [23] have been

used to predict the failure of software projects. Deep learning

methods provide a higher level of machine learning and are

widely used to create models for predicting the failure and

success of software projects [24]. Convolutional neural

networks [25], Long short-term memory (LSTM)[26], and

transformers [27] are deep learning models for predicting the

failure of software projects.

One of the fundamental challenges of predicting the

failure of software projects is the small number of samples

in the data set. The small number of samples used to train

machine learning and deep learning models leads to the

production of weak prediction models [28]. Another

fundamental challenge in developing software project

failure and success prediction models is the need for feature

selection. Most studies use all features to create a software

 Ghaedi et.al

 36

failure prediction model. The feature selection makes

learning the model on the primary and optimal features and

reduces the prediction error [29]. Deep learning methods

such as CNN are mainly used for image processing and are

less used for predicting software success and failure. To

solve this challenge, unique and new coding is needed on the

data of software projects to use the CNN method to predict

the failure and success of the software.

 This manuscript presents an advanced method

combining game theory, swarm intelligence, and deep

learning to predict the failure and success of software

projects. In the first stage, the proposed method combines

the GAN deep learning method [30] and the SMOTE method

[31] to increase the number of data set samples and balance

it. GAN neural network is a suitable method for generating

artificial samples based on actual and game theory samples.

The Cat Hunting Optimization (CHO) algorithm [32]

developed by the authors is used for feature selection. The

selected feature vector map on the dataset is in the third step.

The given mapping data is then coded into RGB color

images and placed as the input of the CNN neural network

and VGG 16 architecture. The output of the VGG 16 deep

learning model has two states: failure and success.

The main goal of the manuscript is to estimate and predict

the failure of software projects with deep learning and

swarm intelligence. The proposed method aims to discover

failures in the early stages of software production, reduce the

losses of software developers, and increase customer

satisfaction. The contributions of the authors in the

manuscript and the proposed method are as follows:

 Improving the GAN deep learning technique with

the SMOTE method in balancing data sets related

to software projects.

 Creating artificial examples of software projects

with game theory

 Improving the cat optimization algorithm for

feature selection in detecting the basic features of

software projects

 Using a new coding to train the VGG 16 neural

network in predicting the failure of software

projects

The manuscript is presented in five sections. Section II

reviews the subject literature on predicting the failure of

software projects and related works. Section III presents the

failure prediction model of software projects by integrating

deep learning and a streamlined algorithm. In section IV, the

failure prediction model of software projects is implemented

and analyzed. In section V, the results are discussed, and

future works are reviewed.

2. Related works

According to reports published in 2018, more than 50%

of the total cost of software production is used to identify

and fix defects and losses caused by software project defects

[7]. However, with the potential of machine learning to

predict software failures, these costs could be significantly

reduced. Reports show that 1.7 trillion dollars were spent to

fix these violations, and 314 software companies have been

involved [7]. If the software is used in critical systems, its

violation can be destructive. For example, the role of

software in an airplane can cause a disaster [33]. Software

violations in nuclear power control systems and industries

cause significant losses and disasters [34, 35]. Deep learning

and code analysis methods of software projects are powerful

tools for predicting software failure [36]. LSTM, DBN,

CNN, GNN, and BERT are deep learning methods applied

to software defect prediction. This section reviews related

works in software defect prediction with machine learning

(ML) and deep learning (DL). In the rest of this section,

several studies on software failure with deep learning and

machine learning approaches are reviewed.

In [19], Software defect prediction is presented based on

support vector machines with different kernels. Experiments

show that using 40% of features with all kernel functions

works best. In [1], software defect prediction methods are

investigated using combined techniques. Their main

advantage is that they review many papers. A challenge of

their method is the need for more consideration of data set

balancing and feature selection methods. In [37], they

provide a software defect prediction method based on the

Variable sparrow search algorithm. One challenge of their

proposed method is the imbalance of the data set. In [14],

optimal machine learning techniques for software error

prediction are suggested. Their evaluation shows that their

method is more accurate than SVM, Naive Bayes, and the

nearest neighbor in predicting software defects.

In [38], a feature transfer learning method with

reinforcement learning is present for software defect

detection. The proposed SDP method uses feature transfer

learning to map original features to another feature space.

They evaluated the proposed method on 43 projects from the

PROMISE and NASA MDP datasets using three classifiers:

logistic regression, random forest, and Bayesian network.

Experimental results show that their method is more accurate

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 37

than logistic regression, random forest, and Bayesian

networks. In [39], they presented a software defect

prediction method using a tree-based method. This research

uses grid search to optimize meta-parameters of random

forest methods, Extra trees, AdaBoost, gradient boosting,

histogram-based gradient boosting, XGBoost, and CatBoost.

Their method uses 21 software defect datasets to evaluate.

The experimental results showed that Extra trees and random

forests have the highest accuracy in predicting software

violations.

In [40], they presented a software defect prediction model

based on a complex and graph neural network. This research

proposes a software defect prediction framework based on

graph neural networks and complex networks:

1. They code the software as a graph where nodes

represent classes and edges represent dependencies

between classes.

2. The community detection algorithm divides the

graph into several subgraphs.

3. The improved graph neural network model learns

the vector representing nodes.

The proposed model is implemented on the PROMISE

dataset. Their method is more accurate than a graph-based

neural network. The challenge of their method is the high

complexity of the model. In [41], a software defect

prediction method based on deep learning is proposed for

mobile applications. They used deep learning algorithms

like CNN and LSTM to develop a defect prediction model

for Android-based applications. Based on the results, the

CNN-based model has the best performance for predicting

mobile phone app defects, and its accuracy is around 93.3%.

In [42], software defect prediction using artificial neural

networks is reviewed. This study's advantage is that it

reviews articles in the field of neural networks, and its

challenge is not to review other deep learning methods.

In [43], software defect prediction presents a balancing

method based on KNN. Experiments use benchmark data

sets from the NASA repository, including CM1, JM1, KC1,

KC2, and PC1. The evaluation classifier showed that the

proposed model has an accuracy of 96.9% and a confidence

level of 95%. In [44], a software defect prediction approach

using support vector machines is presented. The proposed

method improves accuracy by 16.73% compared to the

support vector machine. In [45], a genetic algorithm-based

sampling method for balancing classes in software defect

prediction is presented. This method is compared to several

existing algorithms such as SMOTE, BSMOTE, ADASYN,

over-random sampling, and MAHAKIL balancing

algorithms. The results show that their proposed algorithm

outperforms these methods regarding prediction error

reduction.

In [46], software defect prediction is based on an

advanced extreme learning machine present. The proposed

method is based on the SSDAE and extreme learning

optimized by particle swarm optimization (PSO) and

gravitational search algorithm (GSA) in this research. In

[47], they presented a software defect prediction method

using the Island Moth Flame Optimization. The experiments'

results show that feature selection using the IsBMFO

algorithm improves the classification results and provides

the best results in combination with the support vector

machine . In [48], they presented a software defect

prediction method based on a combined particle swarm

optimization and sparrow search algorithm. This research

combines PSO and SSA to improve convergence. The

experimental results showed that SSA-PSO has less error

than SSA and PSO algorithms in predicting software defects.

In [49], a new multi-objective optimization algorithm is

presented to predict software defects. In this model, defect

detection and false alarm rates are considered two goals in

software failure prediction. In [50], random forest

algorithms and multi-objective optimization are proposed

for predicting software defects. The test showed that the

proposed method improved the AUC index by 2.78 and 3.46

compared to MONB and MONBNN, respectively.

In [51], they present an optimized machine-learning

model for predicting software bugs. The principal

component analysis (PCA) method reduces dimensions and

selects features. The tests showed that their method of

predicting software bug detection has an accuracy of about

97.8%. In [52], a genetic algorithm-based feature selection

method for software defect prediction using SVM is

presented. This research proposes a genetic evolution

(GeEv) technique for feature selection. The experimental

results show that the GeEv method performs better than the

traditional genetic algorithm approach and can provide

better statistical accuracy in software prediction. In [53], a

software defect prediction method based on genetic

evolution based on the 3-parent child is presented. For

software defect prediction (SDP), data with large dimensions

are used, so selecting features to reduce the dimensions is

recommended. Experiments showed that their proposed

method of filter-based feature selection techniques and

wrapper-based feature selection techniques up to 17.5%

AUC index. In [51], they presented a feature selection

method based on the Firefly algorithm for software error

 Ghaedi et.al

 38

prediction. This study uses the NASA collection that is

available to the public. Evaluations showed that their method

is more accurate in predicting software failure than methods

such as GA and PSO algorithms. Table (1) reviews a

summary of related works with their advantages and

disadvantages.

Table 1. Advantages and disadvantages of related works

defect Advantage Method Source

Failure to check more complex
kernels

60% reduction in dimensions Support vector machine with different kernels [19]

Failure to review balancing
methods and feature selection

Review a large number of methods Software defect prediction using hybrid techniques [1]

Unbalanced data set Prediction accuracy in 15 data sets is higher

than in similar methods.
Prediction of software defects based on Sparrow's
adaptive variable search algorithm

[37]

Unbalanced data set More accuracy than SVM, Naive Bayes, and

KNN methods.
Optimal machine learning techniques for software
error prediction

[14]

medium accuracy More accurate than logistic regression,

random forest, and Bayesian network
A feature transfer learning method with reinforcement

learning
[38]

No balancing and no feature
selection

Optimization of machine learning parameters Software defect prediction using tree methods [39]

High complexity of the model More accuracy than graph-based neural
network

Complex network and graph neural network [40]

Time consuming training The prediction accuracy is about 93.3% CNN and LSTM [41]
Failure to investigate other deep
learning methods

A comprehensive review of papers in the field
of neural networks

Review of methods based on artificial neural
networks

[42]

No reduction in machine learning
input

High accuracy of about 96.9% Balancing based on KNN [43]

No balancing and no feature
selection

The prediction accuracy compared to the SVM
improved by 16.73%

Filtered support vector machines [44]

Uncertainty of meta-heuristic
algorithms

Performance better than SMOTE, BSMOTE,
ADASYN

Genetic algorithm for balancing [45]

High model complexity Discover deep semantic features Extreme learning [46]

Unbalanced data set More accuracy than SVM method Island moth flame optimization algorithm+SVM [47]

More prediction time than SSA and

PSO algorithm
Less prediction error than SSA and PSO

algorithm
Software defect prediction based on PSO and SSA

algorithms
[48]

Uncertainty Reducing prediction error Software defect prediction by multi-objective
optimization algorithm

[49]

Lack of feature selection phase More accuracy than MONB and MONBNN
methods

Random forest algorithms and multi-objective
optimization for software defect prediction

[50]

Unbalanced data set High accuracy Feature selection by PCA method [51]
Unbalanced data set More accuracy than genetic algorithm Feature selection by three-parent genetic algorithm [52]
Unbalanced data set More accurate than methods based on filter

and wrapper
NSGA-II methods for software defect prediction [53]

Unbalanced data set More accuracy than GA,DE, and PSO

algorithm
Feature selection by Firefly algorithm [51]

The review of related works shows that most studies need

a mechanism for balancing the data set to accurately predict

software failure. Meta-heuristic algorithms such as PSO and

GA are used in the studies, but these algorithms need to

better model global and local search balances. In the

research, advanced convolutional neural network

architectures have yet to be used to accurately predict

software defect. The proposed method reduces the software

defect prediction error by balancing the data set with game

theory and the deep learning method based on a

convolutional neural network. In the proposed method to

increase the prediction model's performance, the swarm

intelligence of cats is also used in hunting so that learning is

done on more optimal features and the error of the software

failure prediction model is reduced.

3. The proposed method

This section presents a proposed method or

GAN+CHO+VGG16 (GCV) for software defect prediction

with an improved cat optimization algorithm and deep

learning. The innovation of the proposed method is as

follows:

 The SMOTE algorithm is used to improve GAN

deep learning in the first step.

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 39

 Hybrid the SMOTE algorithm and deep learning

based on game theory with the GAN network

balances the dataset.

 The cat optimization algorithm is improved, the

hunting mechanism is added, and a binary version

is provided for feature selection.

 The data selected in the dataset are converted into

RGB color images by the feature vector and used to

train the VGG16 neural network.

3.1. The proposed framework

The proposed framework for software failure prediction

is shown in Figure 1. According to the proposed framework

for software failure prediction, the following steps are

presented:

Figure 1. The framework of the proposed method for software defect prediction

 Ghaedi et.al

 40

 Data set balancing with GAN and SMOTE neural

network.

 Selection of essential features with improved cat

optimization algorithm.

 Reducing the dimensions of data set samples.

 Converting numerical samples to RGB images.

 VGG16 neural network training.

 Classification of software projects into two classes

of failure and success with the trained network

VGG16

3.2. Preprocessing dataset

The dataset used for software defect prediction has a large

number of features. Each of the features has a range, and

these ranges are different from each other. The

normalization process is used in the pre-processing phase so

that the upper and lower limits of the values of all features

are the same and normalized. Equation (1) is used for pre-

processing and normalization in the [a,b] range:

1

𝑥𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑎 + (𝑏 − 𝑎)
𝑥−min(𝑥)

max(𝑥)−min(𝑥)

In this equation, x is the value of an unnormalized feature,

and 𝑥𝑛𝑜𝑟𝑚𝑎𝑙 is the normalized value of feature x.

3.3. Balancing the data set

 GAN network is a deep learning technique based on

game theory. The generator(G) and discriminator (D) are the

two main parts of this neural network. There is a game

between the generator and the discriminator, and its goal is

that the generator succeeds in deceiving the discriminator.

Based on the real samples, the manufacturer tries to produce

artificial or fake samples and deliver them to a discriminator.

The generator wins if the discriminator is deceived and puts

the artificial and fake samples in the real class. If the

discriminator succeeds in placing the fake sample in the fake

category, then the discriminator wins [54]. In [9], the

SMOTE algorithm is used to improve and increase the

accuracy of the GAN network. The role of SMOTE is to

generate random and artificial samples from the minority

class for the generator in the GAN network. The SMOTE

algorithm increases the diversity of generated samples and

the quality of the GAN network when producing synthetic

samples. In Figure 2, SMOTE-GAN is shown for generating

synthetic samples and increasing the number of software

project datasets' samples. The SMOTE method for

producing synthetic samples has challenges. The main

disadvantage of SMOTE is that it focuses too much on local

information and neighborhood data, so it does not produce a

diverse set of new data [55].

Figure 2. Generation of random samples by GAN + SMOTE

In the SMOTE method, several Real samples are blindly

selected, and several random samples are created by

interpolation. The SMOTE method produces artificial

samples with little diversity and makes the generated data

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 41

contribute little to creating accurate classification and

prediction models. Unlike SMOTE, the GAN network

produces more random data. By combining SMOTE and

GAN methods, the created samples become more realistic

because GAN creates global data to a large extent, and

SMOTE creates local data. In the improved GAN model, the

random and Real input of the generator is considered with x

and z, respectively. The objective function in the

discriminator is presented in the form of Equation (2) [9]:

2

max𝐷  𝔼𝑥[log𝐷(𝑥)] + 𝔼𝑧[log(1 − 𝐷(𝐺(𝑧)))]

The objective function of the discriminator in Equation

(2) is of the maximization type. Equation (3) to minimize the

objective function of the discriminator is suggested [9]:

3

min𝐷  𝔼𝑥[−log𝐷(𝑥)] − 𝔼𝑧[log(1 − 𝐷(𝐺(𝑧)))]

D(x) contains the output probabilities of the discriminator

for the Real data, and D(G(z,x)) contains the output

probabilities of the discriminator for the generated data. The

objective function in the generator is defined as Equation (4)

[9]:

4

 min𝐺  − 𝔼𝑧[log𝐷(𝐺(𝑧))]

To increase the efficiency of the proposed model in the

discriminator and generating part, sigmoid activity functions

according to Equations (5) and (6) are used [9]:

5

𝔼𝑥[−log(1 + 𝑒−𝑦)] − 𝔼𝑧[1 − log(1 + 𝑒−�̂�)]

6

 𝔼𝑧[−log(1 + 𝑒−�̂�)]

 y and �̂� are the outputs of the discriminator and

generator, respectively, before applying the activation

function. In the improved version, the GAN random

generator function is replaced with minority samples

produced by SMOTE, and the objective function in the

discriminator and generator part is formulated as Equations

(7) and (8):

7

max𝐷  𝔼𝑥∗[log𝐷(𝑥∗ ∣ 𝑥)] + 𝔼𝑢[log(1 − 𝐷(𝐺(𝑢)))]

8

min𝐺  − 𝔼𝑢[log𝐷(𝐺(𝑢))]

In these equations, 𝑥∗is the training samples of the

minority class, and u is the oversampling data of the same

class generated from various algorithms, such as SMOTE.

3.4. Feature selection Cat Hunting Optimization (CHO)

algorithm

The cat optimization algorithm is a swarm intelligence

algorithm. The cat optimization algorithm contains the

concepts of the particle swarm optimization algorithm. In the

optimization algorithm, every problem solution is

considered a cat. In the standard version of the cat

optimization algorithm, the distinction between solutions

based on merit is not considered. In the proposed method,

each cat or problem solver with more competence and

experience can search around his space to find the optimal

solution. The Cat Hunting Optimization(CHO)

algorithm[32] presented by the authors in 2023, unlike the

cat algorithm, has more intelligence, and Experiments show

that this algorithm has less error in finding the optimal

solution of optimization problems than PSO, DE, FA, GOA,

SHO, MFO, and WOA algorithms. The advantage of the

CHO algorithm is as follows, and for this reason, a binary

version of it is presented in this manuscript for feature

selection[32]:

 The ability to explore, search, and perform dynamic

exploitation.

 The ability to search for the space between the

optimum and the population mean.

 Giving weight to more appropriate solutions for

further searching around these solutions.

 Using trigonometric equations for more adequate

formulation.

 Learning between solutions.

Each problem solution is a feature vector in the proposed

method, and a population of random feature vectors is

created according to Equation (9).

 Ghaedi et.al

 42

9

𝑋 =

[

𝑥1,1 ⋯ 𝑥1,𝑗 𝑥1, d-1 𝑥1, d

𝑥2,1 ⋯ 𝑥2,𝑗 ⋯ 𝑥2, d

⋯ ⋯ 𝑥𝑖,𝑗 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑁−1,1 ⋯ 𝑥𝑁−1,𝑗 ⋯ 𝑥𝑁−1, d

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 𝑥𝑁, d-1 𝑥𝑁,𝑑]

 In this equation, d is the number of dimensions of the

problem and the number of elements of each feature vector.

N is the number of feature vectors for software defect

prediction. Each matrix row is a feature vector with zero and

one element, and the matrix's columns are the dataset's

features.

The feature number j of the feature vector number

X𝑖𝑗 represents me. Each feature vector needs an appropriate

objective function to evaluate. This research considers two

error elements and the number of features to evaluate the

feature vectors. The proposed objective function is a linear

function of the error component and the number of features

according to Equation (10).

10
𝐶𝑜𝑠𝑡(𝑋𝑖) = 𝑤1 ×

1

𝑛
𝐸(𝑋𝑖) + 𝑤2 ×

‖𝑋𝑖‖

𝑑

𝑋𝑖 is the number of features selected by 𝑋𝑖, and E(𝑋𝑖) is

the software defect prediction error by 𝑋𝑖. Each feature

vector in this step is set as the input of the MLP neural

network, and its output error is used for evaluation. 𝑤1 and

𝑤2are two random weight coefficients in the range [0,1]. In

the proposed method, the most optimal and the worst

population cats consider b and w, respectively, assuming it

is a maximization problem. A cat with f(b) competence is the

most experienced cat, and a cat with f(w) competence has

the worst competence and has little experience. Any cat with

more experience can consider more states for tracking. If a

cat has little experience and competence, it considers fewer

states for tracking and chooses one.

Suppose that cat or solution b and w have the number of

states 𝑆𝑡𝑎𝑡𝑒𝑚𝑎𝑥 and 𝑆𝑡𝑎𝑡𝑒𝑚𝑖𝑛 respectively, where

𝑆𝑡𝑎𝑡𝑒𝑚𝑎𝑥>𝑆𝑡𝑎𝑡𝑒𝑚𝑖𝑛. It is possible to express the number of

states of each cat, such as 𝑋𝑖, for tracking based on the merit

of a cat in the form of Equation (11) [32]:

11 State(Xi)

= (
(f(Xi) − f(w))

f(b) − f(w)
)p(State(b)

− State(w)) + State(w)

𝑆𝑡𝑎𝑡𝑒(𝑋𝑖) is the number of states that a cat can search

based on, and increasing the merit of each cat increases this

parameter, and on the other hand, p is the power parameter,

which is a number that can be He chose it between -2 and

+2. Decreasing the search radius makes the search in the

first iterations more exploratory and in the last iterations

more exploitative. By determining the number of states to be

searched by each cat, different states can be distributed

around the current solution and transferred to one of the

desired positions with the probability used in Equation (12)

[32]:

12 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 ± 𝑟𝑎𝑛𝑑. 𝑅(𝑡)

In this equation, R(1) equals the search radius in the first

iteration, and five is considered. MaxIt and t are the

maximum iterations and the current iteration number of the

improved cat algorithm, respectively. Cats pay special

attention to the position of the prey or the optimal solution

and the center of gravity of the cat's gathering. In the

proposed algorithm, the space between the current solution

is searched from the average, as well as the space between

the current solution and the optimal solution according to

Equation (13) [32]:

13 𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟1. (𝑋𝑖 − 𝑋𝑀)

+ 𝑟2. (𝑋𝑖

− 𝑋∗)

 𝑋∗ is the position of the most optimal solution or bait

position. 𝑋𝑀 is the average of the population of solutions.

𝑟1 and 𝑟2 are two random numbers between zero and one.

Equation (14) is used to calculate the average solutions[32]:

14

𝑋𝑀 =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

A better approach is to calculate the weight coefficient

and importance of each solution in equation (14), and for this

purpose, Equation (15) is used[32]:

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 43

15
𝑋𝑀 =

∑ 𝑤𝑖 . 𝑋𝑖
𝑁
𝑖=1

𝑁

=
𝑤1 . 𝑋1 + 𝑤2. 𝑋2 + ⋯+ 𝑤𝑁 . 𝑋𝑁

𝑁

𝑤𝑖 is the fitness weight of a solution or cat, which is

calculated according to Equation (16) [32]:

16
𝑤𝑖 =

(𝑓(𝑋𝑖) − 𝑓(𝑤))

𝑓(𝑏) − 𝑓(𝑤)

If Equation (16) is inserted in Equation (15), then

Equation (17) is obtained[32]:

17 𝑋𝑀

=
1

𝑁
∑

(𝑓(𝑋𝑖) − 𝑓(𝑤))

𝑓(𝑏) − 𝑓(𝑤)
. 𝑋𝑖

𝑁

𝑖=1

 In the CHO algorithm, the learning of cats is considered.

A cat like 𝑋𝑖 randomly considers a cat like 𝑋𝑗, and if the

merit of 𝑋𝑗 is more than 𝑋𝑖, then 𝑋𝑖 can move in the direction

of the cat 𝑋𝑗, and this modeling is shown in Equation (18)

[32]:

18 𝑋𝑖
𝑛𝑒𝑤

= 𝑋𝑖 + sin(
𝜋

2
×

𝑡

𝑀𝑎𝑥𝐼𝑡
)

× 𝑟 × (𝑋𝑗 − 𝑋𝑖)

In this equation, sin(
𝜋

2
×

𝑡

𝑀𝑎𝑥𝐼𝑡
) is a convergence

coefficient that increases the effect of the factor 𝑋𝑗 − 𝑋𝑖 over

time and the iteration of the proposed algorithm. This

coefficient makes the 𝑋𝑖 cat move towards the 𝑋𝑗 cat faster

in the final iteration and increases the speed of changing the

nature of the search from global to local.

 Like the cat optimization algorithm, the attack phase is

run by the velocity vector in the proposed algorithm. Still, in

the proposed algorithm, the velocity vector with two

components is used in line with the most optimal member

and the most optimal position that a cat has obtained.

Equation (19) is used to define the velocity vector. In

calculating the velocity vector, the most optimal position of

the cats and the most optimal solution obtained by a cat so

far are used to determine the direction of the velocity. 𝑐1 and

𝑐2are the learning coefficients in the PSO algorithm and 𝑟1

and 𝑟2are two random numbers between zero and one[32]:

19 𝑉𝑖
𝑛𝑒𝑤

= 𝜔. 𝑉𝑖 + 𝑐1. 𝑟1. (𝑋
∗ − 𝑋𝑖)

+ 𝑐2. 𝑟2. (𝑋
𝑏 − 𝑋𝑖)

The inertia coefficient for velocity vectors in repetition t

with ω(t) and, according to Equation (20), regularly

decreases according to repetition[32]:

20 𝜔(𝑡)

= 𝜔(1). 𝑒𝑥𝑝(
1 − 𝑡

𝑀𝑎𝑥𝐼𝑡 − 𝑡
)

The initial value of the inertia coefficient is represented

by ω(1), and MaxIt represents the maximum iteration of the

feature selection algorithm. Feature vectors have zero and

one element, and their values must remain binary even with

updates. When the feature vectors are updated, their values

decimalize, and conversion functions are used to make them

binary again. Transformation functions such as S and V have

a range of [0,1]. With transformation functions, the feature

vectors normalize between zero and one. If a feature vector

component has a value less than 0.5 after being affected by

transformation functions such as S and V, it becomes equal

to one. Otherwise, if the normalized value of a feature vector

component is greater than or equal to 0.5, then the feature

vector component is set equal to one. In the proposed

method, the feature vectors code is first used as a member of

the CHO algorithm, and an initial population of feature

vectors is randomized. The feature vectors are updated with

the equations of the CHO algorithm as follows(Figure 3):

 In each iteration, the worst and the best solutions

are selected, and based on these two solutions, the

weight of the importance of each solution or feature

vector is determined.

 The number of solutions and tracking mode for

each feature vector is determined based on its

importance weight.

 Calculate the probability of moving to states.

 Update feature vectors by moving into the tracking

phase.

 Update feature vectors by searching between mean

and optimal space.

 Update feature vectors based on the velocity vector.

 Binaryizing the feature vectors and repeating the

steps of the proposed algorithm to extract the

optimal feature vector.

3.5. Classification of projects with neural network

VGG16

CNN neural network has several architectures; one of the

successful architectures is the VGG16 architecture. VGG16

neural network is used in most cases for image processing,

and its input is images. VGG16 network is used to classify

images. In the research [56], he used special coding to

 Ghaedi et.al

 44

classify non-image samples. This research converts

numerical data and features into color images, and a neural

network is used for classification. The proposed method

selects M samples of software defects from the dataset and

considers k-selected features. In this case, the image is

M*M. k columns of the desired image are the selected

features of the dataset, and the rest of the columns, whose

number is M-k numbers, have a value of zero. For the input

to be color images, the first M sample of the software defect

is taken from the R color channel, the following M sample

from the G color channel, and the other M sample from the

B color channel. There are two classes of color images. Their

first class is software projects with defects, and the second

class is successful projects. The values of each matrix are

normalized between 0 and 255 so that each matrix has

typical light intensity values. These images are used to train

the VGG16 neural network. The input of neural network

VGG16 is an example of software projects in two classes:

defect and success. The output of the VGG16 neural network

is two classes of success or defect of the software project.

Figure 3. Flowchart for the proposed method

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 45

4. Experimentation

In this section, the proposed method for software defect

prediction is implemented and compared with similar

methods. MATLAB 2021 software is used to implement the

proposed method in the feature selection phase, and Python

is used for deep learning. TensorFlow and Keras libraries are

used. The number of feature vectors is equal to 10, and the

number of iterations of the meta-heuristic algorithm is equal

to 50. The number of tests is set to 30, and the average of the

trials is calculated. The normalization limit is between 0 and

1. The proposed method is compared with meta-heuristic

algorithms JSO[57], AVOA[58], COA[59], WOA[60] and

HHO[61]. In the JSO algorithm, the beta coefficient is equal

to 3, and the omega coefficient is equal to 0.1. The

coefficient C in the WOA algorithm is a random number

between 0 and 2, the value of b is equal to 1, and the value

of l is equal to 0.1. The value of J in the HHO algorithm is

equal to 2, and E in the HHO algorithm is equal to 2. COA

and AVOA parameters are initialized according to sources

[58, 59].

4.1. Dataset

In this manuscript, several datasets use for evaluation.

One of the datasets used to evaluate the selected algorithms

is the PROMISE dataset [62]. The PROMISE dataset is one

of the most widely used repositories for predicting software

defects. Table (2) shows the selected data set with the

number of samples and the distribution of defect classes. In

Table (2), the data set from the PROMISE repository is used

by NASA, which includes data sets KC1, PC5, MC1, JM1,

PC1, MW1, PC2, KC3, PC4, CM1, and MC2[63].

Table 2. NASA datasets for evaluating the proposed method

S. No. Datasets Number of Instances Number of Features

1 MC1 1988 39

2 MC2 125 40

3 MW1 253 38

4 PC1 705 38

5 PC2 745 37

6 PC3 1077 38

7 PC4 1287 38

8 PC5 1711 39

9 CM1 327 38

10 KC1 1183 22

11 KC3 194 40

12 CM1 327 38

In addition to the PROMISE data set, the data set,

including experimental reconstruction events of four open-

source software systems (JUnit et al. and ANTLR4), is used

to evaluate the proposed method. The data set is available in

the PROMISE repository. Table (3) [64] shows the studied

features of the data set.

Table 3. List of datasets of experimental reconstruction events in four source software systems

Dataset No. of Attributes Instances No. of Refactoring Percentage (%)

Antlr4 134 436 23 5.2

Junit 134 657 9 1.3

MapDB 134 439 4 0.9

McMMO 134 301 3 0.99

4.2. Evaluation metrics

The evaluation indices according to Equations (21), (22),

(23), (24) for evaluating the proposed method are used:

21
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 Ghaedi et.al

 46

22
𝐴𝑈𝐶 =

1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)

23
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

24
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

TP, TN, FP, and FN parameters are defined as follows to

calculate precision, sensitivity, and precision:

 TP: A software project has a defect, and the

proposed method has classified it in the defect

class.

 FP: A software project has been successful, and the

proposed method has classified it in the defect

class.

 TN: a software project has been met with success,

and the proposed method has classified it in the

successful class.

 FN: A software project has a defect, and the

proposed method has classified it in the successful

class.

4.3. Evaluation results

In this section, the proposed method or CHO is evaluated

and analyzed. In the first part of the tests, three versions of

the proposed method, CHO1, CHO2, and CHO2, are

developed and implemented. In the CHO1 version, only

feature selection is made with the CHO algorithm. In

addition to feature selection with the CHO algorithm, GAN

balancing is used in the CHO2 version. In addition to feature

selection with the CHO algorithm, GAN and SMOTE

balancing are used in the CHO3 version. Tables (4), (5), and

(6), show the accuracy(acc), sensitivity(recall), and

precision of the GCV or proposed method is compared in 3

versions of the proposed method. The conducted tests show

that if methods of balancing the data set increase minority

samples, then the proposed method's accuracy, sensitivity,

and precision will increase. The GAN+SMOTE balancing

method is more effective than the GAN balancing method

and increases the accuracy of the proposed method in

software failure prediction. If the proposed method uses the

feature selection method without balancing the dataset, it has

accuracy, sensitivity, and precision of 90.98%, 89.69%, and

89.02%, respectively. If the proposed method uses the GAN

balancing method, it has accuracy, sensitivity, and precision

of 94.14%, 92.68%, and 92.19%, respectively. The proposed

method, combining the GAN and SMOTE methods, has

more accuracy, precision, and sensitivity in predicting

software failure. In the optimal state, the proposed method's

accuracy, sensitivity, and precision for predicting software

failure are 96.69%, 96.32%, and 96.13%, respectively.

Table 4. Evaluation of the proposed method in accuracy index in the NASA dataset

CHO3 CHO2 CHO1 Dataset

98.64 96.54 95.28 PC1

99.68 98.59 97.98 PC2

95.66 94.23 89.86 PC3

98.74 96.92 94.67 PC4

92.67 84.69 78.63 PC5

95.39 92.64 83.99 JM1

93.27 86.91 82.64 KC1

96.73 94.51 92.36 KC3

95.57 93.39 91.68 CM1

99.24 98.64 97.09 MC1

98.37 97.52 95.71 MC2

96.35 95.12 91.88 MW1

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 47

Table 5. Evaluation of the proposed method in the sensitivity index in the NASA dataset

CHO3 CHO2 CHO1 Dataset

98.56 95.51 94.46 PC1

98.86 98.48 97.62 PC2

94.41 93.37 88.82 PC3

98.25 94.26 93.06 PC4

92.57 82.29 77.61 PC5

95.42 92.39 82.29 JM1

93.21 84.19 81.06 KC1

96.46 92.68 90.55 KC3

94.92 91.06 90.23 CM1

99.12 98.59 96.61 MC1

98.17 95.21 94.09 MC2

95.97 94.22 89.88 MW1

Table 6. Evaluation of the proposed method in the precision index in the NASA dataset

CHO3 CHO2 CHO1 Dataset

98.41 95.43 94.55 PC1

98.74 98.38 97.51 PC2

94.33 92.86 87.62 PC3

98.16 94.11 92.86 PC4

92.34 81.79 76.49 PC5

95.32 90.27 81.08 JM1

92.83 82.92 80.28 KC1

96.29 92.18 90.16 KC3

94.61 90.44 88.24 CM1

98.83 98.04 95.59 MC1

98.11 95.39 93.89 MC2

 Ghaedi et.al

 48

Figure 4. Evaluation of the proposed method in three modes (A)

The proposed method in the feature selection phase is

based on the swarm intelligence algorithm. For the detailed

analysis of the proposed method in Figure 5, the proposed

method in the NASA dataset is compared with JSO, AVOA,

COA, WOA, and HHO methods in 12 datasets.

Figure 5. Evaluation of the proposed method in three modes (B)

The experiment and comparisons show that the accuracy

of software defect prediction in JSO, AVOA, COA, WOA,

and HHO methods is 96.19%, 96.08%, 96.24%, 95.87%, and

94.25%, respectively. The accuracy of the proposed method

is 96.69%.

The proposed method (GCV) has the highest accuracy in

software defect prediction among the compared methods.

75

80

85

90

95

100

(VGG16)CHO1

(GAN+VGG16)CHO2

(GAN+SMOTE+VGG16)CHO3

89.02

92.19

96.13

89.69

92.68

96.32

90.98

94.14
96.69

Precision Sensitivity Accuracy

95.92
95.46 95.98

95.35

93.04

96.13
96.21

95.68 96.11
95.61

93.28

96.3296.19 96.08 96.24 95.87

94.25

96.69

75

80

85

90

95

100

JSO AVOA COA WOA HHO Proposed Method

Precision Sensitivity Accuracy

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 49

The worst algorithm for predicting software failure in terms

of accuracy index is the HHO algorithm. The sensitivity

index in the proposed method is equal to 96.32%, and the

highest sensitivity index in predicting software failure

belongs to the proposed method. In the precision index, the

proposed method is more successful in predicting software

failure than the JSO, AVOA, COA, WOA, and HHO

methods. The proposed method (GCV) performs better than

other feature selection algorithms in three indicators:

accuracy, sensitivity, and precision. Among the compared

algorithms, COA and JSO algorithms perform better than

AVOA, WOA, and HHO algorithms. The results of

experiments in the CM1, JM1, and KC1 datasets are

compared with the results of [62] to evaluate the proposed

method accurately. In Figure 6 and Figure 7, respectively,

the accuracy index and standard deviation of the tests of the

proposed method are compared with K2, Hill Climbing,

TAN, Decision Tree, and Random Forest methods in [62].

Figure 6. Comparison of the accuracy of the proposed method in software defect prediction in three datasets

In KC1, JM1, and CM1 data sets, the accuracy of the

proposed method in predicting software failure is 93.27%,

95.39%, and 95.12%, respectively. Among the compared

data sets, the proposed method in the JM1 data set has the

highest accuracy in software failure prediction. In the KC1

data set, the random forest method has the highest prediction

accuracy after the proposed method. The K2 method has the

lowest accuracy in the KC1 data set. The K2 method must

perform better in the software defect prediction of the three

datasets. A primary index for measuring the stability of

algorithms in software defect prediction is the standard

deviation of tests. Figure 7 compares the proposed method

with K2, Hill Climbing, TAN, Decision Tree, and Random

Forest methods in the standard deviation index.

91.83 91.83 92

94 94
95.12

80.79 80.79

82.36
81.7

83.82

95.39

84.83

88.62 88.15

89.57 90.04

93.27

75

80

85

90

95

100

K2[66] Hill Climbing[66] TAN[66] Decision Tree[66] Random Forest[66] Proposed Method

CM1 JM1 KC1

Accuracy

 Ghaedi et.al

 50

Figure 7. Comparison of the standard deviation of the proposed method in software defect prediction

 Experiments and comparisons showed that the K2

method has the lowest standard deviation(STD) in the three

datasets, and the proposed method ranks second in the

standard deviation index. In other words, the proposed

method is more accurate for software defect prediction than

Hill Climbing, TAN, Decision Tree, and Random Forest

methods. In Figure 8, the proposed method is compared with

the results of [20] in predicting software failure in the index.

.

Figure 8. Comparison of the accuracy of the proposed method in software defect prediction

The proposed method in the NASA dataset has an

accuracy of 96.69%, and the Chi, IG, and ReF feature

selection methods have the accuracy of software defect

prediction. The reason for the higher accuracy of the

proposed method compared to Chi, IG, and ReF feature

selection methods is the balancing of the dataset by the

GAN+SMOTE method and the increase of minority

samples.

Another reason is that the VGG19 classifier is more

accurate than the decision tree classifier of Chi, IG, and ReF

methods. The third reason is that the feature selection

algorithm in the proposed method (GCV) is based on swarm

intelligence and is a more optimal version of the cat

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

K2[66]
Hill

Climbing[66]
TAN[66]

Decision
Tree[66] Random

Forest[66] Proposed
Method

0.563 0.835

4.077

2.865

2.084

0.692

0.454

0.454 0.767 0.886
0.808

0.526

0.225

1.526
1.887

1.904

1.547

0.869

CM1 JM1 KC1

STD

84.56 84.45
83.26

96.69

75

80

85

90

95

100

 Chi[23] IG[23] ReF[23] Proposed Method

 Chi[23] IG[23] ReF[23] Proposed Method

Accuracy

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 51

optimization algorithm. However, Chi, IG, and ReF feature

selection methods lack swarm intelligence mechanisms and

select features based on statistical rules. The proposed

method is compared with several deep learning methods for

further evaluation with three software defect prediction

datasets in [65]. The proposed method for comparison is

implemented on three data sets, SFP XP-TDD, Eclipse, and

Active MQ, and compared with CNN, LSTM, and BiLSTM

methods in the accuracy index (Figure 9).

.

Figure 9. Comparing the accuracy of the proposed method in software defect prediction with deep learning methods

In the SFP XP-TDD data set, the accuracy of CNN,

LSTM, and BiLSTM methods is 95.62%, 95.91%, and

95.33%, respectively, and the accuracy of the proposed

method is 97.43%. The proposed method with VGG16

architecture is more accurate than CNN, LSTM, and

BiLSTM in predicting software failure. The proposed

method in the Eclipse dataset has an accuracy of about

84.52%. The accuracy of CNN, LSTM, and BiLSTM in this

dataset is 76.85%, 77.77%, and 78.7%, respectively, and the

proposed method is more accurate than these three deep

learning methods. In the Active MQ dataset, the proposed

method in software defect prediction is 96.67%, and the

accuracy of CNN, LSTM, and BiLSTM methods is 95.17%,

94.88%, and 94.73%, respectively. The proposed method is

more accurate than CNN, LSTM, and BiLSTM deep

learning methods in the SFP XP-TDD, Eclipse, and Active

MQ datasets in predicting software failure. Figure 10

compares the proposed method based on the time index with

JSO, AVOA, COA, WOA, and HHO feature selection

methods. Experiments show that due to the robust modeling

of the proposed algorithm (GCV) in the feature selection

phase, its execution time is slightly longer than the JSO and

WOA methods. Experiments show that the software failure

prediction time by the proposed method is less than the

AVOA, COA, and HHO methods.

95.62

76.85

95.1795.91

77.77

94.8895.33

78.7

94.73
97.43

84.52

96.67

0

10

20

30

40

50

60

70

80

90

100

SFP XP-TDD Eclipse Active MQ

CNN[69] LSTM[69] BiLSTM[69] VGG16(proposed Method)Accuracy

 Ghaedi et.al

 52

Figure 10. Comparison of execution time in software failure prediction

According to the experiments, the proposed method of

predicting software failure has the following advantages:

 The proposed method (GCV) is more accurate than

deep learning methods such as CNN, LSTM, and

BiLSTM in predicting software failure.

 The proposed method (GCV) is more accurate due

to the balancing of the data set than the forecasting

methods that do not have the balancing of the data

set.

 Due to intelligent feature selection, the proposed

method is more accurate than other feature

selection methods such as JSO, AVOA, COA,

WOA, and HHO.

 The proposed method can predict software failure

due to the creation of artificial data on small data

sets.

 In addition to the NASA dataset, the proposed

method is more accurate than deep learning

methods in the SFP XP-TDD dataset, Eclipse

Active MQ.

The proposed method has the following disadvantages:

 Prediction accuracy depends on the quality of

training data.

 The process of teaching deep learning methods is

time-consuming and requires appropriate

hardware.

 The proposed method suffers from uncertainty at

this stage due to using meta-heuristic algorithms in

feature selection.

 Determining the parameters of the algorithms used

in the proposed method requires optimization.

The problem of the proposed method and other software

failure prediction methods that reduce the quality of

prediction are summarized below:

 The proposed method and many software failure

prediction methods cannot predict practical

software failure.

 Better quality modeling is provided if software

failure prediction uses human error factors.

 Predictive methods should be able to read program

codes, and feature extraction is a crucial step in

understanding code and finding violations.

 Using Natural Language Processing (NLP)

increases the ability to predict software failure,

detect faulty codes, and improve the quality of the

prediction model.

5. Conclusion

The manuscript uses the Cat Hunting Optimization

(CHO) algorithm and deep learning to predict a software

project's failure. The advantage of the improved version of

the cat algorithm is the ability to search for exploration and

exploratory searches. The number of data set samples and

8.32

10.83

9.85

8.16

11.67

8.96

0

2

4

6

8

10

12

14

JSO AVOA COA WOA HHO Proposed Method

JSO AVOA COA WOA HHO Proposed Method

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 53

minority classes increases to reduce the error of the software

failure prediction model with the game theory based on the

GAN neural network improved with SMOTE. The binary

version of the CHO algorithm selects the essential features

of software projects that play an important role in predicting

software failure. The selected optimal features of the data set

convert into RGB color images, and the images are set as the

input of the VGG 16 deep learning network. The role of the

convolutional neural network is to classify the examples of

software projects into two classes: failure and success. The

experiments performed on the NASA software project

dataset show that the proposed method in predicting the

failure of software projects has an accuracy, sensitivity, and

precision of 96.69%, 96.32%, and 96.13%, respectively.

Without balancing the data set, the proposed method has an

accuracy, sensitivity, and precision of 90.98%, 89.69%, and

89.02%, respectively. Balancing the data set with the GAN

and SMOTE neural network increases the accuracy of the

proposed failure prediction model. The proposed method

accurately predicts software failure from neural networks

such as MLP, RNN, LSTM, and Bi-LSTM. The proposed is

more accurate in predicting software failure than WOA,

HHO, AVOA, JSO, and COA algorithms.

 The main advantage of the proposed method (GCV) is

balancing the data set and increasing the examples of

software projects with precise methods based on game

theory. Another advantage of the proposed method is the

intelligent selection of features of software projects in

predicting software failure. Another advantage of the

proposed method (GCV) is the ability to generate artificial

samples by combining GAN and SMOTE. The proposed

method is more accurate than some deep learning and

machine learning methods for predicting the failure of

software projects. In addition to the mentioned advantages,

the proposed method has several challenges. The

disadvantages of the proposed method are the prediction

model's complexity and the uncertainty of meta-heuristic

algorithms in feature selection. In future work, a hybrid

neural network based on CNN-LSTM architecture will be

used to classify software projects into failure and success.

Another future work is extracting features from the

programming code of software projects with natural

processing language (NLP) and pre-trained BERT networks.

Authors’ Contributions

Authors equally contributed to this article.

Data Availability Statement

The datasets generated during and/or analysed during the

current study are available in

http://promise.site.uottawa.ca/SERepository/datasets-

page.html

Acknowledgments

Authors thank all participants who participate in this

study.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethical Considerations

All procedures performed in this study were under the

ethical standards.

References

[1] R. Malhotra, S. Chawla, and A. Sharma, "Software defect

prediction using hybrid techniques: a systematic literature

review," Soft Computing, pp. 1-34, 2023, doi:

10.1007/s00500-022-07738-w.

[2] D. A. Rebro, B. Rossi, and S. Chren, "Source Code Metrics

for Software Defects Prediction," arXiv preprint

arXiv:2301.08022, 2023, doi: 10.1145/3555776.3577809.

[3] R. Vashisht and S. A. M. Rizvi, "Addressing Noise and Class

Imbalance Problems in Heterogeneous Cross-Project Defect

Prediction: An Empirical Study," International Journal of e-

Collaboration (IJeC), vol. 19, no. 1, pp. 1-27, 2023, doi:

10.4018/IJeC.315777.

[4] F. Huang and L. Strigini, "HEDF: A Method for Early

Forecasting Software Defects based on Human Error

Mechanisms," IEEE Access, 2023, doi:

10.1109/ACCESS.2023.3234490.

[5] N. Yadav and V. Yadav, "Software reliability prediction and

optimization using machine learning algorithms: A review,"

Journal of Integrated Science and Technology, vol. 11, no. 1,

pp. 457-457, 2023.

[6] R. Moussa and F. Sarro, "On the use of evaluation measures

for defect prediction studies," in Proceedings of the 31st ACM

SIGSOFT International Symposium on Software Testing and

Analysis, July 2022, pp. 101-113, doi:

10.1145/3533767.3534405.

[7] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A.

Abraham, "A systematic literature review on software defect

prediction using artificial intelligence: Datasets, Data

Validation Methods, Approaches, and Tools," Engineering

Applications of Artificial Intelligence, vol. 111, p. 104773,

2022, doi: 10.1016/j.engappai.2022.104773.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

 Ghaedi et.al

 54

[8] G. G. Cabral and L. L. Minku, "Towards reliable online just-

in-time software defect prediction," IEEE Transactions on

Software Engineering, vol. 49, no. 3, pp. 1342-1358, 2022,

doi: 10.1109/TSE.2022.3175789.

[9] B. U. Sharma and R. Sadam, "Do the Defect Prediction

Models Really Work?," arXiv e-prints, 2023.

[10] M. Gupta, K. Rajnish, and V. Bhattacharya, "Effectiveness of

Ensemble Classifier Over State-Of-Art Machine Learning

Classifiers for Predicting Software Faults in Software

Modules," in Machine Learning, Image Processing, Network

Security and Data Sciences: Select Proceedings of 3rd

International Conference on MIND 2021, January 2023, pp.

77-88, doi: 10.1007/978-981-19-5868-7_7.

[11] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra, "Machine

learning-based software defect prediction for mobile

applications: A systematic literature review," Sensors, vol. 22,

no. 7, p. 2551, 2022, doi: 10.3390/s22072551.

[12] S. Gurung, "Performing Software Defect Prediction Using

Deep Learning," in Cognition and Recognition: 8th

International Conference, ICCR 2021, January 2023, pp. 319-

331, doi: 10.1007/978-3-031-22405-8_25.

[13] N. C. Shrikanth, S. Majumder, and T. Menzies, "Early life

cycle software defect prediction. why? how?," in 2021

IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), May 2021, pp. 448-459, doi:

10.1109/ICSE43902.2021.00050.

[14] M. Shafiq, F. H. Alghamedy, N. Jamal, T. Kamal, Y. I.

Daradkeh, and M. Shabaz, "Scientific programming using

optimized machine learning techniques for software fault

prediction to improve software quality," IET Software, 2023,

doi: 10.1049/sfw2.12091.

[15] S. Hameed, Y. Elsheikh, and M. Azzeh, "An optimized case-

based software project effort estimation using genetic

algorithm," Information and Software Technology, vol. 153,

p. 107088, 2023, doi: 10.1016/j.infsof.2022.107088.

[16] F. Meng, W. Cheng, and J. Wang, "Semi-supervised software

defect prediction model based on tri-training," KSII

Transactions on Internet & Information Systems, vol. 15, no.

11, 2021, doi: 10.3837/tiis.2021.11.009.

[17] H. Krasner, "The cost of poor software quality in the US: A

2020 report," Proc. Consortium Inf. Softw. QualityTM

(CISQTM), 2021.

[18] M. Jagtap, P. Katragadda, and P. Satelkar, "Software

Reliability: Development of Software Defect Prediction

Models Using Advanced Techniques," in 2022 Annual

Reliability and Maintainability Symposium (RAMS), January

2022, pp. 1-7, doi: 10.1109/RAMS51457.2022.9893986.

[19] M. Azzeh, Y. Elsheikh, A. B. Nassif, and L. Angelis,

"Examining the performance of kernel methods for software

defect prediction based on support vector machine," Science

of Computer Programming, vol. 226, p. 102916, 2023, doi:

10.1016/j.scico.2022.102916.

[20] A. Iqbal and S. Aftab, "A Classification Framework for

Software Defect Prediction Using Multi-filter Feature

Selection Technique and MLP," International Journal of

Modern Education & Computer Science, vol. 12, no. 1, 2020,

doi: 10.5815/ijmecs.2020.01.03.

[21] Z. Marian, I. G. Mircea, I. G. Czibula, and G. Czibula, "A

novel approach for software defect prediction using fuzzy

decision trees," in 2016 18th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), September 2016, pp. 240-247, doi:

10.1109/SYNASC.2016.046.

[22] A. Balaram and S. Vasundra, "Prediction of software fault-

prone classes using ensemble random forest with adaptive

synthetic sampling algorithm," Automated Software

Engineering, vol. 29, no. 1, p. 6, 2022, doi: 10.1007/s10515-

021-00311-z.

[23] J. Goyal and R. Ranjan Sinha, "Software defect-based

prediction using logistic regression: Review and challenges,"

in Second International Conference on Sustainable

Technologies for Computational Intelligence: Proceedings of

ICTSCI 2021, 2022, pp. 233-248, doi: 10.1007/978-981-16-

4641-6_20.

[24] C. Pornprasit and C. K. Tantithamthavorn, "Deeplinedp:

Towards a deep learning approach for line-level defect

prediction," IEEE Transactions on Software Engineering, vol.

49, no. 1, pp. 84-98, 2022, doi: 10.1109/TSE.2022.3144348.

[25] Z. M. Zain, S. Sakri, N. H. A. Ismail, and R. M. Parizi,

"Software defect prediction harnessing on multi 1-

dimensional convolutional neural network structure,"

Computers, Materials and Continua, vol. 71, no. 1, p. 1521,

2022, doi: 10.32604/cmc.2022.022085.

[26] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan, and I. Zada,

"Software defect prediction employing BiLSTM and BERT-

based semantic feature," Soft Computing, vol. 26, no. 16, pp.

7877-7891, 2022, doi: 10.1007/s00500-022-06830-5.

[27] W. Zheng, L. Tan, and C. Liu, "Software Defect Prediction

Method Based on Transformer Model," in 2021 IEEE

International Conference on Artificial Intelligence and

Computer Applications (ICAICA), June 2021, pp. 670-674,

doi: 10.1109/ICAICA52286.2021.9498179.

[28] B. J. Odejide et al., "An Empirical Study on Data Sampling

Methods in Addressing Class Imbalance Problem in Software

Defect Prediction," in Software Engineering Perspectives in

Systems: Proceedings of 11th Computer Science On-line

Conference 2022, July 2022, vol. 1, pp. 594-610, doi:

10.1007/978-3-031-09070-7_49.

[29] A. O. Balogun et al., "Impact of feature selection methods on

the predictive performance of software defect prediction

models: an extensive empirical study," Symmetry, vol. 12, no.

7, p. 1147, 2020, doi: 10.3390/sym12071147.

[30] S. Zhang, S. Jiang, and Y. Yan, "A Software Defect Prediction

Approach Based on BiGAN Anomaly Detection," Scientific

Programming, 2022, doi: 10.1155/2022/5024399.

[31] S. Feng, J. Keung, P. Zhang, Y. Xiao, and M. Zhang, "The

impact of the distance metric and measure on SMOTE-based

techniques in software defect prediction," Information and

Software Technology, vol. 142, p. 106742, 2022, doi:

10.1016/j.infsof.2021.106742.

[32] A. Ghaedi, A. K. Bardsiri, and M. J. Shahbazzadeh, "Cat

hunting optimization algorithm: a novel optimization

algorithm," Evolutionary Intelligence, vol. 16, no. 2, pp. 417-

438, 2023, doi: 10.1007/s12065-021-00668-w.

[33] J. Sun, L. Chen, F. Cang, H. Li, and F. Pi, "Civil Aircraft

Airborne Software Safety and Reliability Study Based on

RTCA/DO-178C," in Proceedings of the 5th International

Conference on Computer Science and Software Engineering,

October 2022, pp. 27-33, doi: 10.1145/3569966.3569974.

[34] G. Giray, K. E. Bennin, Ö. Köksal, Ö. Babur, and B.

Tekinerdogan, "On the use of deep learning in software defect

prediction," Journal of Systems and Software, vol. 195, p.

111537, 2023, doi: 10.1016/j.jss.2022.111537.

[35] Y. Guan, J. Zhang, R. Zhang, J. Gan, and M. Liu, "Fault

Handling of Digital System in Nuclear Power Plants," in 2022

IEEE International Conference on Advances in Electrical

Engineering and Computer Applications (AEECA), August

2022, pp. 166-171, doi:

10.1109/AEECA55500.2022.9919016.

[36] A. Abdu, Z. Zhai, R. Algabri, H. A. Abdo, K. Hamad, and M.

A. Al-antari, "Deep Learning-Based Software Defect

Prediction via Semantic Key Features of Source Code-

 Management Strategies and Engineering Sciences: 2025; 7(1):34-55

 55

Systematic Survey," Mathematics, vol. 10, no. 17, p. 3120,

2022, doi: 10.3390/math10173120.

[37] Y. Tang, Q. Dai, M. Yang, T. Du, and L. Chen, "Software

defect prediction ensemble learning algorithm based on

adaptive variable sparrow search algorithm," International

Journal of Machine Learning and Cybernetics, pp. 1-21, 2023,

doi: 10.1007/s13042-022-01740-2.

[38] S. Guo, J. Wang, Z. Xu, L. Huang, H. Li, and R. Chen,

"Feature transfer learning by reinforcement learning for

detecting software defect," Software: Practice and

Experience, vol. 53, no. 2, pp. 366-389, 2023, doi:

10.1002/spe.3152.

[39] A. Alazba and H. Aljamaan, "Software Defect Prediction

Using Stacking Generalization of Optimized Tree-Based

Ensembles," Applied Sciences, vol. 12, no. 9, p. 4577, 2022,

doi: 10.3390/app12094577.

[40] M. Cui, S. Long, Y. Jiang, and X. Na, "Research of Software

Defect Prediction Model Based on Complex Network and

Graph Neural Network," Entropy, vol. 24, no. 10, p. 1373,

2022, doi: 10.3390/e24101373.

[41] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra, "Deep

Learning-Based Defect Prediction for Mobile Applications,"

Sensors, vol. 22, no. 13, p. 4734, 2022, doi:

10.3390/s22134734.

[42] M. A. Khan et al., "Software defect prediction using artificial

neural networks: A systematic literature review," Scientific

Programming, 2022, doi: 10.1155/2022/2117339.

[43] S. Goyal, "Handling class-imbalance with KNN

(neighbourhood) under-sampling for software defect

prediction," Artificial Intelligence Review, vol. 55, no. 3, pp.

2023-2064, 2022, doi: 10.1007/s10462-021-10044-w.

[44] S. Goyal, "Effective software defect prediction using support

vector machines (SVMs)," International Journal of System

Assurance Engineering and Management, vol. 13, no. 2, pp.

681-696, 2022, doi: 10.1007/s13198-021-01326-1.

[45] C. Arun and C. Lakshmi, "Genetic algorithm-based

oversampling approach to prune the class imbalance issue in

software defect prediction," Soft Computing, vol. 26, no. 23,

pp. 12915-12931, 2022, doi: 10.1007/s00500-021-06112-6.

[46] N. Zhang, S. Ying, K. Zhu, and D. Zhu, "Software defect

prediction based on stacked sparse denoising autoencoders

and enhanced extreme learning machine," IET Software, vol.

16, no. 1, pp. 29-47, 2022, doi: 10.1049/sfw2.12029.

[47] R. A. Khurma, H. Alsawalqah, I. Aljarah, M. A. Elaziz, and

R. Damaševičius, "An enhanced evolutionary software defect

prediction method using island moth flame optimization,"

Mathematics, vol. 9, no. 15, p. 1722, 2021, doi:

10.3390/math9151722.

[48] L. Yang, Z. Li, D. Wang, H. Miao, and Z. Wang, "Software

defects prediction based on hybrid particle swarm

optimization and sparrow search algorithm," IEEE Access,

vol. 9, pp. 60865-60879, 2021, doi:

10.1109/ACCESS.2021.3072993.

[49] T. Ye, W. Li, J. Zhang, and Z. Cui, "A novel multi‐objective

immune optimization algorithm for under sampling software

defect prediction problem," Concurrency and Computation:

Practice and Experience, vol. 35, no. 4, p. e7525, 2023, doi:

10.1002/cpe.7525.

[50] S. Kanwar et al., "Efficient Random Forest Algorithm for

Multi-objective Optimization Optimized ensemble machine

learning model for software bugs prediction," Innovations in

Systems and Software Engineering, vol. 19, no. 1, pp. 91-101,

2023, doi: 10.1007/s11334-022-00506-x.

[51] S. Goyal, "3PcGE: 3-parent child-based genetic evolution for

software defect prediction," Innovations in Systems and

Software Engineering, vol. 19, no. 2, pp. 197-216, 2023, doi:

10.1007/s11334-021-00427-1.

[52] S. Goyal, "Genetic evolution-based feature selection for

software defect prediction using SVMs," Journal of Circuits,

Systems and Computers, vol. 31, no. 11, p. 2250161, 2022,

doi: 10.1142/S0218126622501614.

[53] S. Goyal, "FOFS: firefly optimization for feature selection to

predict fault-prone software modules In - Data Engineering for

Smart Systems: Proceedings of SSIC 2021," Springer

Singapore, 2022, pp. 479-487.

[54] K. L. Wong, K. S. Chou, R. Tse, S. K. Tang, and G. Pau, "A

Novel Fusion Approach Consisting of GAN and State-of-

Charge Estimator for Synthetic Battery Operation Data

Generation," Electronics, vol. 12, no. 3, p. 657, 2023, doi:

10.3390/electronics12030657.

[55] J. H. Joloudari, A. Marefat, M. A. Nematollahi, S. S. Oyelere,

and S. Hussain, "Effective Class-Imbalance Learning Based

on SMOTE and Convolutional Neural Networks," Applied

Sciences, vol. 13, no. 6, p. 4006, 2023, doi:

10.3390/app13064006.

[56] A. El-Ghamry, A. Darwish, and A. E. Hassanien, "An

optimized CNN-based intrusion detection system for reducing

risks in smart farming," Internet of Things, vol. 22, p. 100709,

2023, doi: 10.1016/j.iot.2023.100709.

[57] J. S. Chou and D. N. Truong, "A novel metaheuristic optimizer

inspired by behavior of jellyfish in ocean," Applied

Mathematics and Computation, vol. 389, p. 125535, 2021,

doi: 10.1016/j.amc.2020.125535.

[58] B. Abdollahzadeh, F. S. Gharehchopogh, and S. Mirjalili,

"African vultures optimization algorithm: A new nature-

inspired metaheuristic algorithm for global optimization

problems," Computers & Industrial Engineering, vol. 158, p.

107408, 2021, doi: 10.1016/j.cie.2021.107408.

[59] M. Dehghani, Z. Montazeri, E. Trojovská, and P. Trojovský,

"Coati Optimization Algorithm: A new bio-inspired

metaheuristic algorithm for solving optimization problems,"

Knowledge-Based Systems, vol. 259, p. 110011, 2023, doi:

10.1016/j.knosys.2022.110011.

[60] S. Mirjalili and A. Lewis, "The whale optimization

algorithm," Advances in Engineering Software, vol. 95, pp.

51-67, 2016, doi: 10.1016/j.advengsoft.2016.01.008.

[61] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja,

and H. Chen, "Harris hawks optimization: Algorithm and

applications," Future Generation Computer Systems, vol. 97,

pp. 849-872, 2019, doi: 10.1016/j.future.2019.02.028.

[62] M. J. Hernández-Molinos, A. J. Sánchez-García, R. E.

Barrientos-Martínez, J. C. Pérez-Arriaga, and J. O. Ocharán-

Hernández, "Software Defect Prediction with Bayesian

Approaches," Mathematics, vol. 11, no. 11, p. 2524, 2023, doi:

10.3390/math11112524.

[63] H. Das, S. Prajapati, M. K. Gourisaria, R. M. Pattanayak, A.

Alameen, and M. Kolhar, "Feature Selection Using Golden

Jackal Optimization for Software Fault Prediction,"

Mathematics, vol. 11, no. 11, p. 2438, 2023, doi:

10.3390/math11112438.

[64] M. Akour, M. Alenezi, and H. Alsghaier, "Software

Refactoring Prediction Using SVM and Optimization

Algorithms," Processes, vol. 10, no. 8, p. 1611, 2022, doi:

10.3390/pr10081611.

[65] E. Borandag, "Software Fault Prediction Using an RNN-

Based Deep Learning Approach and Ensemble Machine

Learning Techniques," Applied Sciences, vol. 13, no. 3, p.

1639, 2023, doi: 10.3390/app13031639.

