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Abstract 

Predicting the failure of software projects in the stages of software production reduces the losses of software companies. 

Deep learning methods are an efficient tool for software failure prediction. Imbalance of data sets, intelligent feature 

selection, and accurate deep learning techniques are among the challenges of deep learning methods for accurate software 

failure prediction. This manuscript presents an improved game theory method based on the Generative adversarial (GAN) 

network to predict software failure and success. In the second stage, the cat-hunting algorithm is used to select features and 

reduce the dimensions of the samples. The dimensionally reduced samples are converted into RGB color images in the third 

step. RGB images are used for convolutional neural network(CNN) training. The advantage of the proposed method is to 

intelligently select the feature, reduce the input of the CNN neural network, and simultaneously balance the training samples 

with game theory to increase the accuracy of the prediction model. In this manuscript, the NASA dataset is used to predict 

the failure of software projects. The accuracy of the proposed method (GCV) in predicting the failure of software projects 

is equal to 96.69%. The GCV method is more accurate in predicting the failure of software projects than the LSTM and 

VGG16 methods. The proposed method is more accurate in feature selection than Chi, IG, and ReF WOA, HHO, and JSO 

algorithms methods. 
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1. Introduction 

Many software projects are offered in the very complex 

and modern world today. Complex and modernized software 

is done during the engineering process of software 

production. It takes a lot of money to produce complex 

software. Big software projects are developed by big 

companies [1]. Many software projects succeed by spending 

much money, and some projects have defects [2]. Failure to 

achieve predetermined software production goals is 

considered software project failure [3]. In some software 

projects, project failure costs millions of dollars [4]. 

With the complexity of software design, ensuring the 

software's reliability is very important [5]. A lot of testing 

and debugging is running to design a reliable software 

engineering project. One of the challenges of traditional 

approaches to predicting the failure of software projects is 

the time-consuming process [6]. Another challenge of these 

methods is that the software must be completed and tested. 

Creating a software project that ultimately leads to failure 

can cost software production companies much [7]. A 

suitable approach is to predict the success or failure of the 

project at the time of software production [8]. Predicting the 

failure of a software project in the early stages will prevent 

software development companies from spending money, and 

time will be well spent. Another advantage of predicting the 

success or failure of software projects at each stage of project 

development is that the factors leading to failure can be 

recognized [9]. 

Software defect prediction is a technique to improve 

software quality and reduce software testing costs with 

predictive methods such as machine learning [10] and deep 

learning [11]. Many software companies use prediction 

methods to predict success in customer satisfaction and save 

software production costs [12]. Software defect prediction is 

a vital component of the life cycle process of application 

software development [13]. Anticipating software defects 

makes it possible to quickly provide customers with high-

quality and low-cost software. At each stage of software 

production, a quality software product can be provided by 

predicting the success of the goals. Many companies 

producing software are inclined to predict software defects 

at the very early stages of software development to maintain 

the quality of the software for customer satisfaction and save 

the cost of testing [14]. 

 Software effort estimation is considered a primary 

activity in software project management. Software failure 

prediction is one of the tools for estimating effort in software 

development [15]. Studies show that many software defects 

are due to inappropriate project management methods. 

Various factors contribute to the failure of a software project, 

including unrealistic and unexpected goals for the project, 

incorrect estimation of required resources, incorrect 

definition of requirements, poor reporting of project 

development, and poor communication between the 

programming team. , poor communication between 

developers and users, poor technology, inability to manage 

the programming team, use of non-standard development 

methods, little experience of the programming team, and 

lack of cost measurement [1, 4]. 

Project effort estimation includes estimating software 

development's size, effort, cost, time, and staffing. The 

product's success or failure is often estimated at the initial 

stage of any software development project. Predicting a 

software project's failure or success is considered an activity 

in estimating the software effort to complete a project [16]. 

Estimates show that many software projects fail, and this 

issue imposes a significant loss on software developers [17]. 

Predicting the failure of a software project is essential and 

necessary because it produces reliable and quality software 

[18]. Predicting the defeat or success of a software project 

with prediction methods such as machine learning and deep 

learning, unlike traditional approaches, requires less time 

and cost [18]. 

Machine learning and deep learning methods play an 

essential role in predicting the failure of software projects. 

Learning methods create a classification or prediction model 

through the training process, which is used to predict the 

success or failure of software projects. Machine learning 

methods such as SVM [19], neural network [20], decision 

tree [21], random forest [22], and regression [23] have been 

used to predict the failure of software projects. Deep learning 

methods provide a higher level of machine learning and are 

widely used to create models for predicting the failure and 

success of software projects [24]. Convolutional neural 

networks [25], Long short-term memory (LSTM)[26], and 

transformers [27] are deep learning models for predicting the 

failure of software projects. 

One of the fundamental challenges of predicting the 

failure of software projects is the small number of samples 

in the data set. The small number of samples used to train 

machine learning and deep learning models leads to the 

production of weak prediction models [28]. Another 

fundamental challenge in developing software project 

failure and success prediction models is the need for feature 

selection. Most studies use all features to create a software 
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failure prediction model. The feature selection makes 

learning the model on the primary and optimal features and 

reduces the prediction error [29]. Deep learning methods 

such as CNN are mainly used for image processing and are 

less used for predicting software success and failure. To 

solve this challenge, unique and new coding is needed on the 

data of software projects to use the CNN method to predict 

the failure and success of the software. 

 This manuscript presents an advanced method 

combining game theory, swarm intelligence, and deep 

learning to predict the failure and success of software 

projects. In the first stage, the proposed method combines 

the GAN deep learning method [30] and the SMOTE method 

[31] to increase the number of data set samples and balance 

it. GAN neural network is a suitable method for generating 

artificial samples based on actual and game theory samples. 

The Cat Hunting Optimization (CHO) algorithm [32] 

developed by the authors is used for feature selection. The 

selected feature vector map on the dataset is in the third step. 

The given mapping data is then coded into RGB color 

images and placed as the input of the CNN neural network 

and VGG 16 architecture. The output of the VGG 16 deep 

learning model has two states: failure and success. 

The main goal of the manuscript is to estimate and predict 

the failure of software projects with deep learning and 

swarm intelligence. The proposed method aims to discover 

failures in the early stages of software production, reduce the 

losses of software developers, and increase customer 

satisfaction. The contributions of the authors in the 

manuscript and the proposed method are as follows: 

 Improving the GAN deep learning technique with 

the SMOTE method in balancing data sets related 

to software projects. 

 Creating artificial examples of software projects 

with game theory 

 Improving the cat optimization algorithm for 

feature selection in detecting the basic features of 

software projects 

 Using a new coding to train the VGG 16 neural 

network in predicting the failure of software 

projects 

The manuscript is presented in five sections. Section II 

reviews the subject literature on predicting the failure of 

software projects and related works. Section III presents the 

failure prediction model of software projects by integrating 

deep learning and a streamlined algorithm. In section IV, the 

failure prediction model of software projects is implemented 

and analyzed. In section V, the results are discussed, and 

future works are reviewed. 

2. Related works 

According to reports published in 2018, more than 50% 

of the total cost of software production is used to identify 

and fix defects and losses caused by software project defects 

[7]. However, with the potential of machine learning to 

predict software failures, these costs could be significantly 

reduced. Reports show that 1.7 trillion dollars were spent to 

fix these violations, and 314 software companies have been 

involved [7]. If the software is used in critical systems, its 

violation can be destructive. For example, the role of 

software in an airplane can cause a disaster [33]. Software 

violations in nuclear power control systems and industries 

cause significant losses and disasters [34, 35]. Deep learning 

and code analysis methods of software projects are powerful 

tools for predicting software failure [36]. LSTM, DBN, 

CNN, GNN, and BERT are deep learning methods applied 

to software defect prediction. This section reviews related 

works in software defect prediction with machine learning 

(ML) and deep learning (DL). In the rest of this section, 

several studies on software failure with deep learning and 

machine learning approaches are reviewed. 

In [19], Software defect prediction is presented based on 

support vector machines with different kernels. Experiments 

show that using 40% of features with all kernel functions 

works best.  In [1], software defect prediction methods are 

investigated using combined techniques. Their main 

advantage is that they review many papers. A challenge of 

their method is the need for more consideration of data set 

balancing and feature selection methods. In [37], they 

provide a software defect prediction method based on the 

Variable sparrow search algorithm. One challenge of their 

proposed method is the imbalance of the data set. In [14], 

optimal machine learning techniques for software error 

prediction are suggested. Their evaluation shows that their 

method is more accurate than SVM, Naive Bayes, and the 

nearest neighbor in predicting software defects.  

In [38], a feature transfer learning method with 

reinforcement learning is present for software defect 

detection. The proposed SDP method uses feature transfer 

learning to map original features to another feature space. 

They evaluated the proposed method on 43 projects from the 

PROMISE and NASA MDP datasets using three classifiers: 

logistic regression, random forest, and Bayesian network. 

Experimental results show that their method is more accurate 
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than logistic regression, random forest, and Bayesian 

networks.  In [39], they presented a software defect 

prediction method using a tree-based method. This research 

uses grid search to optimize meta-parameters of random 

forest methods, Extra trees, AdaBoost, gradient boosting, 

histogram-based gradient boosting, XGBoost, and CatBoost. 

Their method uses 21 software defect datasets to evaluate. 

The experimental results showed that Extra trees and random 

forests have the highest accuracy in predicting software 

violations.  

In [40], they presented a software defect prediction model 

based on a complex and graph neural network. This research 

proposes a software defect prediction framework based on 

graph neural networks and complex networks: 

1. They code the software as a graph where nodes 

represent classes and edges represent dependencies 

between classes. 

2. The community detection algorithm divides the 

graph into several subgraphs. 

3. The improved graph neural network model learns 

the vector representing nodes. 

The proposed model is implemented on the PROMISE 

dataset. Their method is more accurate than a graph-based 

neural network. The challenge of their method is the high 

complexity of the model. In [41], a software defect 

prediction method based on deep learning is proposed for 

mobile applications. They used deep learning algorithms 

like CNN and  LSTM to develop a defect prediction model 

for Android-based applications. Based on the results, the 

CNN-based model has the best performance for predicting 

mobile phone app defects, and its accuracy is around 93.3%.  

In [42], software defect prediction using artificial neural 

networks is reviewed. This study's advantage is that it 

reviews articles in the field of neural networks, and its 

challenge is not to review other deep learning methods. 

In [43], software defect prediction presents a balancing 

method based on KNN. Experiments use benchmark data 

sets from the NASA repository, including CM1, JM1, KC1, 

KC2, and PC1. The evaluation classifier showed that the 

proposed model has an accuracy of 96.9% and a confidence 

level of 95%.  In [44], a software defect prediction approach 

using support vector machines is presented. The proposed 

method improves accuracy by 16.73% compared to the 

support vector machine. In [45], a genetic algorithm-based 

sampling method for balancing classes in software defect 

prediction is presented. This method is compared to several 

existing algorithms such as SMOTE, BSMOTE, ADASYN, 

over-random sampling, and MAHAKIL balancing 

algorithms. The results show that their proposed algorithm 

outperforms these methods regarding prediction error 

reduction. 

In [46], software defect prediction is based on an 

advanced extreme learning machine present. The proposed 

method is based on the SSDAE and extreme learning 

optimized by particle swarm optimization (PSO) and 

gravitational search algorithm (GSA) in this research. In 

[47], they presented a software defect prediction method 

using the Island Moth Flame Optimization. The experiments' 

results show that feature selection using the IsBMFO 

algorithm improves the classification results and provides 

the best results in combination with the support vector 

machine . In [48], they presented a software defect 

prediction method based on a combined particle swarm 

optimization and sparrow search algorithm. This research 

combines PSO and SSA to improve convergence. The 

experimental results showed that SSA-PSO has less error 

than SSA and PSO algorithms in predicting software defects.  

In [49], a new multi-objective optimization algorithm is 

presented to predict software defects. In this model, defect 

detection and false alarm rates are considered two goals in 

software failure prediction. In [50], random forest 

algorithms and multi-objective optimization are proposed 

for predicting software defects. The test showed that the 

proposed method improved the AUC index by 2.78 and 3.46 

compared to MONB and MONBNN, respectively. 

In [51], they present an optimized machine-learning 

model for predicting software bugs. The principal 

component analysis (PCA) method reduces dimensions and 

selects features. The tests showed that their method of 

predicting software bug detection has an accuracy of about 

97.8%. In [52], a genetic algorithm-based feature selection 

method for software defect prediction using SVM is 

presented. This research proposes a genetic evolution 

(GeEv) technique for feature selection. The experimental 

results show that the GeEv method performs better than the 

traditional genetic algorithm approach and can provide 

better statistical accuracy in software prediction. In [53], a 

software defect prediction method based on genetic 

evolution based on the 3-parent child is presented. For 

software defect prediction (SDP), data with large dimensions 

are used, so selecting features to reduce the dimensions is 

recommended. Experiments showed that their proposed 

method of filter-based feature selection techniques and 

wrapper-based feature selection techniques up to 17.5% 

AUC index. In [51], they presented a feature selection 

method based on the Firefly algorithm for software error 
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prediction. This study uses the NASA collection that is 

available to the public. Evaluations showed that their method 

is more accurate in predicting software failure than methods 

such as GA and PSO algorithms. Table (1) reviews a 

summary of related works with their advantages and 

disadvantages. 

Table 1. Advantages and disadvantages of related works 

defect Advantage Method Source 

Failure to check more complex 
kernels 

60%  reduction in dimensions Support vector machine with different kernels [19] 

Failure to review balancing 
methods and feature selection 

Review a large number of methods Software defect prediction using hybrid techniques [1] 

Unbalanced data set Prediction accuracy in 15 data sets is higher 

than in similar methods. 
Prediction of software defects based on Sparrow's 
adaptive variable search algorithm 

[37] 

Unbalanced data set More accuracy than SVM, Naive Bayes, and 

KNN methods. 
Optimal machine learning techniques for software 
error prediction 

[14] 

medium accuracy More accurate than logistic regression, 

random forest, and Bayesian network 
A feature transfer learning method with reinforcement 

learning 
[38] 

No balancing and no feature 
selection 

Optimization of machine learning parameters Software defect prediction using tree methods [39] 

High complexity of the model More accuracy than graph-based neural 
network 

Complex network and graph neural network [40] 

Time consuming training The prediction accuracy is about 93.3% CNN and LSTM [41] 
Failure to investigate other deep 
learning methods 

A comprehensive review of papers in the field 
of neural networks 

Review of methods based on artificial neural 
networks 

[42] 

No reduction in machine learning 
input 

High accuracy of about 96.9% Balancing based on KNN [43] 

No balancing and no feature 
selection 

The prediction accuracy compared to the SVM 
improved by 16.73% 

Filtered support vector machines [44] 

Uncertainty of meta-heuristic 
algorithms 

Performance better than SMOTE, BSMOTE, 
ADASYN 

Genetic algorithm for balancing [45] 

High model complexity Discover deep semantic features Extreme learning [46] 

Unbalanced data set More accuracy than SVM method Island moth flame optimization algorithm+SVM [47] 

More prediction time than SSA and 

PSO algorithm 
Less prediction error than SSA and PSO 

algorithm 
Software defect prediction based on PSO and SSA 

algorithms 
[48] 

Uncertainty Reducing prediction error Software defect prediction by multi-objective 
optimization algorithm  

[49] 

Lack of feature selection phase More accuracy than MONB and MONBNN 
methods 

Random forest algorithms and multi-objective 
optimization for software defect prediction  

[50] 

Unbalanced data set High accuracy Feature selection by PCA method [51] 
Unbalanced data set More accuracy than genetic algorithm Feature selection by three-parent genetic algorithm [52] 
Unbalanced data set More accurate than methods based on filter 

and wrapper 
NSGA-II methods for software defect prediction [53] 

Unbalanced data set More accuracy than GA,DE, and PSO 

algorithm 
Feature selection by Firefly algorithm [51] 

 

The review of related works shows that most studies need 

a mechanism for balancing the data set to accurately predict 

software failure. Meta-heuristic algorithms such as PSO and 

GA are used in the studies, but these algorithms need to 

better model global and local search balances. In the 

research, advanced convolutional neural network 

architectures have yet to be used to accurately predict 

software defect.    The proposed method reduces the software 

defect prediction error by balancing the data set with game 

theory and the deep learning method based on a 

convolutional neural network. In the proposed method to 

increase the prediction model's performance, the swarm 

intelligence of cats is also used in hunting so that learning is 

done on more optimal features and the error of the software 

failure prediction model is reduced. 

3. The proposed method 

This section presents a proposed method or 

GAN+CHO+VGG16 (GCV) for software defect prediction 

with an improved cat optimization algorithm and deep 

learning. The innovation of the proposed method is as 

follows: 

 The SMOTE algorithm is used to improve GAN 

deep learning in the first step. 
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 Hybrid the SMOTE algorithm and deep learning 

based on game theory with the GAN network 

balances the dataset. 

 The cat optimization algorithm is improved, the 

hunting mechanism is added, and a binary version 

is provided for feature selection. 

 The data selected in the dataset are converted into 

RGB color images by the feature vector and used to 

train the VGG16 neural network. 

3.1. The proposed framework 

The proposed framework for software failure prediction 

is shown in Figure 1. According to the proposed framework 

for software failure prediction, the following steps are 

presented: 

 

Figure 1. The framework of the proposed method for software defect prediction 
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 Data set balancing with GAN and SMOTE neural 

network. 

 Selection of essential features with improved cat 

optimization algorithm. 

 Reducing the dimensions of data set samples. 

 Converting numerical samples to RGB images. 

 VGG16 neural network training. 

 Classification of software projects into two classes 

of failure and success with the trained network 

VGG16 

3.2. Preprocessing dataset 

The dataset used for software defect prediction has a large 

number of features. Each of the features has a range, and 

these ranges are different from each other. The 

normalization process is used in the pre-processing phase so 

that the upper and lower limits of the values of all features 

are the same and normalized. Equation (1) is used for pre-

processing and normalization in the [a,b] range: 

 

1                                                                                                     

𝑥𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑎 + (𝑏 − 𝑎)
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 

 

In this equation, x is the value of an unnormalized feature, 

and  𝑥𝑛𝑜𝑟𝑚𝑎𝑙  is the normalized value of feature x.  

3.3. Balancing the data set 

 GAN network is a deep learning technique based on 

game theory. The generator(G) and discriminator (D) are the 

two main parts of this neural network. There is a game 

between the generator and the discriminator, and its goal is 

that the generator succeeds in deceiving the discriminator. 

Based on the real samples, the manufacturer tries to produce 

artificial or fake samples and deliver them to a discriminator. 

The generator wins if the discriminator is deceived and puts 

the artificial and fake samples in the real class. If the 

discriminator succeeds in placing the fake sample in the fake 

category, then the discriminator wins [54].  In [9], the 

SMOTE algorithm is used to improve and increase the 

accuracy of the GAN network. The role of SMOTE is to 

generate random and artificial samples from the minority 

class for the generator in the GAN network. The SMOTE 

algorithm increases the diversity of generated samples and 

the quality of the GAN network when producing synthetic 

samples. In Figure 2, SMOTE-GAN is shown for generating 

synthetic samples and increasing the number of software 

project datasets' samples. The SMOTE method for 

producing synthetic samples has challenges. The main 

disadvantage of SMOTE is that it focuses too much on local 

information and neighborhood data, so it does not produce a 

diverse set of new data [55]. 

 

Figure 2. Generation of random samples by GAN + SMOTE

In the SMOTE method, several Real samples are blindly 

selected, and several random samples are created by 

interpolation. The SMOTE method produces artificial 

samples with little diversity and makes the generated data 
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contribute little to creating accurate classification and 

prediction models. Unlike SMOTE, the GAN network 

produces more random data. By combining SMOTE and 

GAN methods, the created samples become more realistic 

because GAN creates global data to a large extent, and 

SMOTE creates local data. In the improved GAN model, the 

random and Real input of the generator is considered with x 

and z, respectively. The objective function in the 

discriminator  is presented in the form of Equation (2) [9]: 

 

2                                                                                            

max𝐷  𝔼𝑥[log𝐷(𝑥)] + 𝔼𝑧[log(1 − 𝐷(𝐺(𝑧)))] 

 

The objective function of the discriminator in Equation 

(2) is of the maximization type. Equation (3) to minimize the 

objective function of the discriminator is suggested [9]: 

 

3                                                                                     

min𝐷  𝔼𝑥[−log𝐷(𝑥)] − 𝔼𝑧[log(1 − 𝐷(𝐺(𝑧)))] 

 

D(x) contains the output probabilities of the discriminator 

for the Real data, and D(G(z,x)) contains the output 

probabilities of the discriminator for the generated data. The 

objective function in the generator is defined as Equation (4) 

[9]: 

 

4                                                                                    

                                     min𝐺  − 𝔼𝑧[log𝐷(𝐺(𝑧))] 

 

To increase the efficiency of the proposed model in the 

discriminator and generating part, sigmoid activity functions 

according to Equations (5) and (6) are used [9]: 

 

5                                                                                         

𝔼𝑥[−log(1 + 𝑒−𝑦)] − 𝔼𝑧[1 − log(1 + 𝑒−�̂�)] 

6                                                                                    

                                                 𝔼𝑧[−log(1 + 𝑒−�̂�)] 

 y and �̂� are the outputs of the discriminator and 

generator, respectively, before applying the activation 

function. In the improved version, the GAN random 

generator function is replaced with minority samples 

produced by SMOTE, and the objective function in the 

discriminator and generator part is formulated as Equations 

(7) and (8): 

 

7                                                                                   

max𝐷  𝔼𝑥∗[log𝐷(𝑥∗ ∣ 𝑥)] + 𝔼𝑢[log(1 − 𝐷(𝐺(𝑢)))] 

8                                                                                     

min𝐺  − 𝔼𝑢[log𝐷(𝐺(𝑢))] 

In these equations, 𝑥∗is the training samples of the 

minority class, and u is the oversampling data of the same 

class generated from various algorithms, such as SMOTE. 

3.4. Feature selection Cat Hunting Optimization (CHO) 

algorithm 

The cat optimization algorithm is a swarm intelligence 

algorithm. The cat optimization algorithm contains the 

concepts of the particle swarm optimization algorithm. In the 

optimization algorithm, every problem solution is 

considered a cat. In the standard version of the cat 

optimization algorithm, the distinction between solutions 

based on merit is not considered. In the proposed method, 

each cat or problem solver with more competence and 

experience can search around his space to find the optimal 

solution. The Cat Hunting Optimization(CHO) 

algorithm[32] presented by the authors in 2023, unlike the 

cat algorithm, has more intelligence, and Experiments show 

that this algorithm has less error in finding the optimal 

solution of optimization problems than PSO, DE, FA, GOA, 

SHO, MFO, and WOA algorithms. The advantage of the 

CHO algorithm is as follows, and for this reason, a binary 

version of it is presented in this manuscript for feature 

selection[32]: 

 The ability to explore, search, and perform dynamic 

exploitation. 

 The ability to search for the space between the 

optimum and the population mean. 

 Giving weight to more appropriate solutions for 

further searching around these solutions. 

 Using trigonometric equations for more adequate 

formulation. 

 Learning between solutions. 

Each problem solution is a feature vector in the proposed 

method, and a population of random feature vectors is 

created according to Equation (9). 
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9 

𝑋 =

[
 
 
 
 
 

𝑥1,1 ⋯ 𝑥1,𝑗 𝑥1, d-1 𝑥1, d 

𝑥2,1 ⋯ 𝑥2,𝑗 ⋯ 𝑥2, d 

⋯ ⋯ 𝑥𝑖,𝑗 ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑁−1,1 ⋯ 𝑥𝑁−1,𝑗 ⋯ 𝑥𝑁−1, d 

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 𝑥𝑁, d-1 𝑥𝑁,𝑑 ]
 
 
 
 
 

 

 

 In this equation, d is the number of dimensions of the 

problem and the number of elements of each feature vector. 

N is the number of feature vectors for software defect 

prediction. Each matrix row is a feature vector with zero and 

one element, and the matrix's columns are the dataset's 

features.  

The feature number j of the feature vector number 

X𝑖𝑗 represents me. Each feature vector needs an appropriate 

objective function to evaluate. This research considers two 

error elements and the number of features to evaluate the 

feature vectors. The proposed objective function is a linear 

function of the error component and the number of features 

according to Equation (10). 

 

10                                 
𝐶𝑜𝑠𝑡(𝑋𝑖) = 𝑤1 ×

1

𝑛
𝐸(𝑋𝑖) + 𝑤2 ×

‖𝑋𝑖‖

𝑑
 

 

𝑋𝑖 is the number of features selected by 𝑋𝑖, and E(𝑋𝑖) is 

the software defect prediction error by  𝑋𝑖. Each feature 

vector in this step is set as the input of the MLP neural 

network, and its output error is used for evaluation. 𝑤1 and 

𝑤2are two random weight coefficients in the range [0,1]. In 

the proposed method, the most optimal and the worst 

population cats consider b and w, respectively, assuming it 

is a maximization problem. A cat with f(b) competence is the 

most experienced cat, and a cat with f(w) competence has 

the worst competence and has little experience. Any cat with 

more experience can consider more states for tracking. If a 

cat has little experience and competence, it considers fewer 

states for tracking and chooses one.  

Suppose that cat or solution b and w have the number of 

states 𝑆𝑡𝑎𝑡𝑒𝑚𝑎𝑥  and 𝑆𝑡𝑎𝑡𝑒𝑚𝑖𝑛  respectively, where 

𝑆𝑡𝑎𝑡𝑒𝑚𝑎𝑥>𝑆𝑡𝑎𝑡𝑒𝑚𝑖𝑛. It is possible to express the number of 

states of each cat, such as 𝑋𝑖, for tracking based on the merit 

of a cat in the form of Equation (11) [32]: 

 

11                                    State(Xi)

= (
(f(Xi) − f(w))

f(b) − f(w)
)p(State(b)

− State(w)) + State(w) 

 

𝑆𝑡𝑎𝑡𝑒(𝑋𝑖) is the number of states that a cat can search 

based on, and increasing the merit of each cat increases this 

parameter, and on the other hand, p is the power parameter, 

which is a number that can be He chose it between -2 and 

+2.  Decreasing the search radius makes the search in the 

first iterations more exploratory and in the last iterations 

more exploitative. By determining the number of states to be 

searched by each cat, different states can be distributed 

around the current solution and transferred to one of the 

desired positions with the probability used in Equation (12) 

[32]: 

 

12                                  𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 ± 𝑟𝑎𝑛𝑑. 𝑅(𝑡) 

In this equation, R(1) equals the search radius in the first 

iteration, and five is considered. MaxIt and t are the 

maximum iterations and the current iteration number of the 

improved cat algorithm, respectively. Cats pay special 

attention to the position of the prey or the optimal solution 

and the center of gravity of the cat's gathering. In the 

proposed algorithm, the space between the current solution 

is searched from the average, as well as the space between 

the current solution and the optimal solution according to 

Equation (13) [32]: 

13                                   𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟1. (𝑋𝑖 − 𝑋𝑀)

+ 𝑟2. (𝑋𝑖

− 𝑋∗) 

 𝑋∗ is the position of the most optimal solution or bait 

position.  𝑋𝑀 is the average of the population of solutions.  

𝑟1 and  𝑟2 are two random numbers between zero and one. 

Equation (14) is used to calculate the average solutions[32]: 

14                                   

𝑋𝑀 =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

A better approach is to calculate the weight coefficient 

and importance of each solution in equation (14), and for this 

purpose, Equation (15) is used[32]: 
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15                               
𝑋𝑀 =

∑ 𝑤𝑖 . 𝑋𝑖
𝑁
𝑖=1

𝑁

=
𝑤1 . 𝑋1 + 𝑤2. 𝑋2 + ⋯+ 𝑤𝑁 . 𝑋𝑁

𝑁
 

𝑤𝑖  is the fitness weight of a solution or cat, which is 

calculated according to Equation (16) [32]: 

16                               
𝑤𝑖 =

(𝑓(𝑋𝑖) − 𝑓(𝑤))

𝑓(𝑏) − 𝑓(𝑤)
 

If Equation (16) is inserted in Equation (15), then 

Equation (17) is obtained[32]: 

17                                   𝑋𝑀

=
1

𝑁
∑

(𝑓(𝑋𝑖) − 𝑓(𝑤))

𝑓(𝑏) − 𝑓(𝑤)
. 𝑋𝑖

𝑁

𝑖=1

 

 In the CHO algorithm, the learning of cats is considered. 

A cat like 𝑋𝑖 randomly considers a cat like 𝑋𝑗, and if the 

merit of 𝑋𝑗 is more than 𝑋𝑖, then 𝑋𝑖 can move in the direction 

of the cat 𝑋𝑗, and this modeling is shown in Equation (18) 

[32]: 

18                                   𝑋𝑖
𝑛𝑒𝑤

= 𝑋𝑖 + sin(
𝜋

2
×

𝑡

𝑀𝑎𝑥𝐼𝑡
)

× 𝑟 × (𝑋𝑗 − 𝑋𝑖) 

In this equation, sin(
𝜋

2
×

𝑡

𝑀𝑎𝑥𝐼𝑡
) is a convergence 

coefficient that increases the effect of the factor 𝑋𝑗 − 𝑋𝑖 over 

time and the iteration of the proposed algorithm. This 

coefficient makes the 𝑋𝑖 cat move towards the 𝑋𝑗 cat faster 

in the final iteration and increases the speed of changing the 

nature of the search from global to local.  

   Like the cat optimization algorithm, the attack phase is 

run by the velocity vector in the proposed algorithm. Still, in 

the proposed algorithm, the velocity vector with two 

components is used in line with the most optimal member 

and the most optimal position that a cat has obtained. 

Equation (19) is used to define the velocity vector. In 

calculating the velocity vector, the most optimal position of 

the cats and the most optimal solution obtained by a cat so 

far are used to determine the direction of the velocity. 𝑐1 and 

𝑐2are the learning coefficients in the PSO algorithm and 𝑟1 

and 𝑟2are two random numbers between zero and one[32]: 

 

19                                   𝑉𝑖
𝑛𝑒𝑤

= 𝜔. 𝑉𝑖 + 𝑐1. 𝑟1. (𝑋
∗ − 𝑋𝑖)

+ 𝑐2. 𝑟2. (𝑋
𝑏 − 𝑋𝑖) 

 

The inertia coefficient for velocity vectors in repetition t 

with ω(t) and, according to Equation (20), regularly 

decreases according to repetition[32]: 

 

20                                 𝜔(𝑡)

= 𝜔(1). 𝑒𝑥𝑝(
1 − 𝑡

𝑀𝑎𝑥𝐼𝑡 − 𝑡
) 

 

The initial value of the inertia coefficient is represented 

by ω(1), and MaxIt represents the maximum iteration of the 

feature selection algorithm. Feature vectors have zero and 

one element, and their values must remain binary even with 

updates. When the feature vectors are updated, their values 

decimalize, and conversion functions are used to make them 

binary again. Transformation functions such as S and V have 

a range of [0,1]. With transformation functions, the feature 

vectors normalize between zero and one. If a feature vector 

component has a value less than 0.5 after being affected by 

transformation functions such as S and V, it becomes equal 

to one. Otherwise, if the normalized value of a feature vector 

component is greater than or equal to 0.5, then the feature 

vector component is set equal to one.  In the proposed 

method, the feature vectors code is first used as a member of 

the CHO algorithm, and an initial population of feature 

vectors is randomized. The feature vectors are updated with 

the equations of the CHO algorithm as follows(Figure 3): 

 In each iteration, the worst and the best solutions 

are selected, and based on these two solutions, the 

weight of the importance of each solution or feature 

vector is determined. 

 The number of solutions and tracking mode for 

each feature vector is determined based on its 

importance weight. 

 Calculate the probability of moving to states. 

 Update feature vectors by moving into the tracking 

phase. 

 Update feature vectors by searching between mean 

and optimal space. 

 Update feature vectors based on the velocity vector. 

 Binaryizing the feature vectors and repeating the 

steps of the proposed algorithm to extract the 

optimal feature vector.  

3.5. Classification of projects with neural network 

VGG16 

CNN neural network has several architectures; one of the 

successful architectures is the VGG16 architecture. VGG16 

neural network is used in most cases for image processing, 

and its input is images. VGG16 network is used to classify 

images. In the research [56], he used special coding to 
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classify non-image samples. This research converts 

numerical data and features into color images, and a neural 

network is used for classification. The proposed method 

selects M samples of software defects from the dataset and 

considers k-selected features. In this case, the image is 

M*M. k columns of the desired image are the selected 

features of the dataset, and the rest of the columns, whose 

number is M-k numbers, have a value of zero. For the input 

to be color images, the first M sample of the software defect 

is taken from the R color channel, the following M sample 

from the G color channel, and the other M sample from the 

B color channel. There are two classes of color images. Their 

first class is software projects with defects, and the second 

class is successful projects. The values of each matrix are 

normalized between 0 and 255 so that each matrix has 

typical light intensity values. These images are used to train 

the VGG16 neural network. The input of neural network 

VGG16 is an example of software projects in two classes: 

defect and success. The output of the VGG16 neural network 

is two classes of success or defect of the software project. 

 

 

Figure 3. Flowchart for the proposed method 
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4. Experimentation 

In this section, the proposed method for software defect 

prediction is implemented and compared with similar 

methods. MATLAB 2021 software is used to implement the 

proposed method in the feature selection phase, and Python 

is used for deep learning. TensorFlow and Keras libraries are 

used. The number of feature vectors is equal to 10, and the 

number of iterations of the meta-heuristic algorithm is equal 

to 50. The number of tests is set to 30, and the average of the 

trials is calculated. The normalization limit is between 0 and 

1. The proposed method is compared with meta-heuristic 

algorithms JSO[57], AVOA[58], COA[59], WOA[60] and 

HHO[61]. In the JSO algorithm, the beta coefficient is equal 

to 3, and the omega coefficient is equal to 0.1. The 

coefficient C in the WOA algorithm is a random number 

between 0 and 2, the value of b is equal to 1, and the value 

of l is equal to 0.1. The value of J in the HHO algorithm is 

equal to 2, and E in the HHO algorithm is equal to 2. COA 

and AVOA parameters are initialized according to sources 

[58, 59]. 

4.1. Dataset 

In this manuscript, several datasets use for evaluation. 

One of the datasets used to evaluate the selected algorithms 

is the PROMISE dataset [62]. The PROMISE dataset is one 

of the most widely used repositories for predicting software 

defects. Table (2) shows the selected data set with the 

number of samples and the distribution of defect classes. In 

Table (2), the data set from the PROMISE repository is used 

by NASA, which includes data sets KC1, PC5, MC1, JM1, 

PC1, MW1, PC2, KC3, PC4, CM1, and MC2[63]. 

Table 2. NASA datasets for evaluating the proposed method 

S. No. Datasets Number of Instances Number of Features 

1 MC1 1988 39 

2 MC2 125 40 

3 MW1 253 38 

4 PC1 705 38 

5 PC2 745 37 

6 PC3 1077 38 

7 PC4 1287 38 

8 PC5 1711 39 

9 CM1 327 38 

10 KC1 1183 22 

11 KC3 194 40 

12 CM1 327 38 

  

In addition to the PROMISE data set, the data set, 

including experimental reconstruction events of four open-

source software systems (JUnit et al. and ANTLR4), is used 

to evaluate the proposed method. The data set is available in 

the PROMISE repository. Table (3) [64] shows the studied 

features of the data set. 

Table 3. List of datasets of experimental reconstruction events in four source software systems 

Dataset No. of Attributes Instances No. of Refactoring Percentage (%) 

Antlr4 134 436 23 5.2 

Junit 134 657 9 1.3 

MapDB 134 439 4 0.9 

McMMO 134 301 3 0.99 

 

4.2. Evaluation metrics 

The evaluation indices according to Equations (21), (22), 

(23), (24) for evaluating the proposed method are used: 

21 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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22 
𝐴𝑈𝐶 =

1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

23                       
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

24                       
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

TP, TN, FP, and FN parameters are defined as follows to 

calculate precision, sensitivity, and precision: 

 TP: A software project has a defect, and the 

proposed method has classified it in the defect 

class. 

  FP: A software project has been successful, and the 

proposed method has classified it in the defect 

class. 

 TN: a software project has been met with success, 

and the proposed method has classified it in the 

successful class. 

 FN: A software project has a defect, and the 

proposed method has classified it in the successful 

class. 

4.3. Evaluation results 

In this section, the proposed method or CHO is evaluated 

and analyzed. In the first part of the tests, three versions of 

the proposed method, CHO1, CHO2, and CHO2, are 

developed and implemented. In the CHO1 version, only 

feature selection is made with the CHO algorithm. In 

addition to feature selection with the CHO algorithm, GAN 

balancing is used in the CHO2 version. In addition to feature 

selection with the CHO algorithm, GAN and SMOTE 

balancing are used in the CHO3 version. Tables (4), (5), and 

(6), show the accuracy(acc), sensitivity(recall), and 

precision of the GCV or proposed method is compared in 3 

versions of the proposed method. The conducted tests show 

that if methods of balancing the data set increase minority 

samples, then the proposed method's accuracy, sensitivity, 

and precision will increase. The GAN+SMOTE balancing 

method is more effective than the GAN balancing method 

and increases the accuracy of the proposed method in 

software failure prediction. If the proposed method uses the 

feature selection method without balancing the dataset, it has 

accuracy, sensitivity, and precision of 90.98%, 89.69%, and 

89.02%, respectively. If the proposed method uses the GAN 

balancing method, it has accuracy, sensitivity, and precision 

of 94.14%, 92.68%, and 92.19%, respectively. The proposed 

method, combining the GAN and SMOTE methods, has 

more accuracy, precision, and sensitivity in predicting 

software failure. In the optimal state, the proposed method's 

accuracy, sensitivity, and precision for predicting software 

failure are 96.69%, 96.32%, and 96.13%, respectively. 

Table 4. Evaluation of the proposed method in accuracy index in the NASA dataset 

CHO3 CHO2 CHO1 Dataset 

98.64 96.54 95.28 PC1 

99.68 98.59 97.98 PC2 

95.66 94.23 89.86 PC3 

98.74 96.92 94.67 PC4 

92.67 84.69 78.63 PC5 

95.39 92.64 83.99 JM1 

93.27 86.91 82.64 KC1 

96.73 94.51 92.36 KC3 

95.57 93.39 91.68 CM1 

99.24 98.64 97.09 MC1 

98.37 97.52 95.71 MC2 

96.35 95.12 91.88 MW1 
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Table 5. Evaluation of the proposed method in the sensitivity index in the NASA dataset 

CHO3 CHO2 CHO1 Dataset 

98.56 95.51 94.46 PC1 

98.86 98.48 97.62 PC2 

94.41 93.37 88.82 PC3 

98.25 94.26 93.06 PC4 

92.57 82.29 77.61 PC5 

95.42 92.39 82.29 JM1 

93.21 84.19 81.06 KC1 

96.46 92.68 90.55 KC3 

94.92 91.06 90.23 CM1 

99.12 98.59 96.61 MC1 

98.17 95.21 94.09 MC2 

95.97 94.22 89.88 MW1 

Table 6. Evaluation of the proposed method in the precision index in the NASA dataset 

CHO3 CHO2 CHO1 Dataset 

98.41 95.43 94.55 PC1 

98.74 98.38 97.51 PC2 

94.33 92.86 87.62 PC3 

98.16 94.11 92.86 PC4 

92.34 81.79 76.49 PC5 

95.32 90.27 81.08 JM1 

92.83 82.92 80.28 KC1 

96.29 92.18 90.16 KC3 

94.61 90.44 88.24 CM1 

98.83 98.04 95.59 MC1 

98.11 95.39 93.89 MC2 
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Figure 4. Evaluation of the proposed method in three modes (A) 

The proposed method in the feature selection phase is 

based on the swarm intelligence algorithm. For the detailed 

analysis of the proposed method in Figure 5, the proposed 

method in the NASA dataset is compared with JSO, AVOA, 

COA, WOA, and HHO methods in 12 datasets. 

 

Figure 5. Evaluation of the proposed method in three modes (B) 

The experiment and comparisons show that the accuracy 

of software defect prediction in JSO, AVOA, COA, WOA, 

and HHO methods is 96.19%, 96.08%, 96.24%, 95.87%, and 

94.25%, respectively. The accuracy of the proposed method 

is 96.69%.  

The proposed method (GCV) has the highest accuracy in 

software defect prediction among the compared methods. 
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The worst algorithm for predicting software failure in terms 

of accuracy index is the HHO algorithm. The sensitivity 

index in the proposed method is equal to 96.32%, and the 

highest sensitivity index in predicting software failure 

belongs to the proposed method.  In the precision index, the 

proposed method is more successful in predicting software 

failure than the JSO, AVOA, COA, WOA, and HHO 

methods. The proposed method (GCV) performs better than 

other feature selection algorithms in three indicators: 

accuracy, sensitivity, and precision. Among the compared 

algorithms, COA and JSO algorithms perform better than 

AVOA, WOA, and HHO algorithms. The results of 

experiments in the CM1, JM1, and KC1 datasets are 

compared with the results of [62] to evaluate the proposed 

method accurately. In Figure 6 and Figure 7, respectively, 

the accuracy index and standard deviation of the tests of the 

proposed method are compared with K2, Hill Climbing, 

TAN, Decision Tree, and Random Forest methods in [62]. 

 

Figure 6. Comparison of the accuracy of the proposed method in software defect prediction in three datasets 

In KC1, JM1, and CM1 data sets, the accuracy of the 

proposed method in predicting software failure is 93.27%, 

95.39%, and 95.12%, respectively. Among the compared 

data sets, the proposed method in the JM1 data set has the 

highest accuracy in software failure prediction. In the KC1 

data set, the random forest method has the highest prediction 

accuracy after the proposed method. The K2 method has the 

lowest accuracy in the KC1 data set. The K2 method must 

perform better in the software defect prediction of the three 

datasets. A primary index for measuring the stability of 

algorithms in software defect prediction is the standard 

deviation of tests. Figure 7 compares the proposed method 

with K2, Hill Climbing, TAN, Decision Tree, and Random 

Forest methods in the standard deviation index. 
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Figure 7. Comparison of the standard deviation of the proposed method in software defect prediction 

 Experiments and comparisons showed that the K2 

method has the lowest standard deviation(STD) in the three 

datasets, and the proposed method ranks second in the 

standard deviation index. In other words, the proposed 

method is more accurate for software defect prediction than 

Hill Climbing, TAN, Decision Tree, and Random Forest 

methods. In Figure 8, the proposed method is compared with 

the results of [20] in predicting software failure in the index.  

.  

Figure 8. Comparison of the accuracy of the proposed method in software defect prediction 

The proposed method in the NASA dataset has an 

accuracy of 96.69%, and the Chi, IG, and ReF feature 

selection methods have the accuracy of software defect 

prediction. The reason for the higher accuracy of the 

proposed method compared to Chi, IG, and ReF feature 

selection methods is the balancing of the dataset by the 

GAN+SMOTE method and the increase of minority 

samples.  

Another reason is that the VGG19 classifier is more 

accurate than the decision tree classifier of Chi, IG, and ReF 

methods. The third reason is that the feature selection 

algorithm in the proposed method (GCV) is based on swarm 

intelligence and is a more optimal version of the cat 
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optimization algorithm. However, Chi, IG, and ReF feature 

selection methods lack swarm intelligence mechanisms and 

select features based on statistical rules. The proposed 

method is compared with several deep learning methods for 

further evaluation with three software defect prediction 

datasets in [65]. The proposed method for comparison is 

implemented on three data sets, SFP XP-TDD, Eclipse, and 

Active MQ, and compared with CNN, LSTM, and BiLSTM 

methods in the accuracy index (Figure 9). 

 

. 

Figure 9. Comparing the accuracy of the proposed method in software defect prediction with deep learning methods 

In the SFP XP-TDD data set, the accuracy of CNN, 

LSTM, and BiLSTM methods is 95.62%, 95.91%, and 

95.33%, respectively, and the accuracy of the proposed 

method is 97.43%. The proposed method with VGG16 

architecture is more accurate than CNN, LSTM, and 

BiLSTM in predicting software failure. The proposed 

method in the Eclipse dataset has an accuracy of about 

84.52%. The accuracy of CNN, LSTM, and BiLSTM in this 

dataset is 76.85%, 77.77%, and 78.7%, respectively, and the 

proposed method is more accurate than these three deep 

learning methods. In the Active MQ dataset, the proposed 

method in software defect prediction is 96.67%, and the 

accuracy of CNN, LSTM, and BiLSTM methods is 95.17%, 

94.88%, and 94.73%, respectively. The proposed method is 

more accurate than CNN, LSTM, and BiLSTM deep 

learning methods in the SFP XP-TDD, Eclipse, and Active 

MQ datasets in predicting software failure. Figure 10 

compares the proposed method based on the time index with 

JSO, AVOA, COA, WOA, and HHO feature selection 

methods. Experiments show that due to the robust modeling 

of the proposed algorithm (GCV) in the feature selection 

phase, its execution time is slightly longer than the JSO and 

WOA methods. Experiments show that the software failure 

prediction time by the proposed method is less than the 

AVOA, COA, and HHO methods. 
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Figure 10. Comparison of execution time in software failure prediction 

According to the experiments, the proposed method of 

predicting software failure has the following advantages: 

 The proposed method (GCV) is more accurate than 

deep learning methods such as CNN, LSTM, and 

BiLSTM in predicting software failure. 

 The proposed method (GCV) is more accurate due 

to the balancing of the data set than the forecasting 

methods that do not have the balancing of the data 

set. 

 Due to intelligent feature selection, the proposed 

method is more accurate than other feature 

selection methods such as JSO, AVOA, COA, 

WOA, and HHO. 

 The proposed method can predict software failure 

due to the creation of artificial data on small data 

sets. 

 In addition to the NASA dataset, the proposed 

method is more accurate than deep learning 

methods in the SFP XP-TDD dataset, Eclipse 

Active MQ. 

The proposed method has the following disadvantages: 

 Prediction accuracy depends on the quality of 

training data. 

 The process of teaching deep learning methods is 

time-consuming and requires appropriate 

hardware. 

 The proposed method suffers from uncertainty at 

this stage due to using meta-heuristic algorithms in 

feature selection. 

 Determining the parameters of the algorithms used 

in the proposed method requires optimization. 

The problem of the proposed method and other software 

failure prediction methods that reduce the quality of 

prediction are summarized below: 

 The proposed method and many software failure 

prediction methods cannot predict practical 

software failure. 

 Better quality modeling is provided if software 

failure prediction uses human error factors. 

 Predictive methods should be able to read program 

codes, and feature extraction is a crucial step in 

understanding code and finding violations. 

 Using Natural Language Processing (NLP) 

increases the ability to predict software failure, 

detect faulty codes, and improve the quality of the 

prediction model. 

5. Conclusion 

The manuscript uses the Cat Hunting Optimization 

(CHO) algorithm and deep learning to predict a software 

project's failure. The advantage of the improved version of 

the cat algorithm is the ability to search for exploration and 

exploratory searches. The number of data set samples and 
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minority classes increases to reduce the error of the software 

failure prediction model with the game theory based on the 

GAN neural network improved with SMOTE. The binary 

version of the CHO algorithm selects the essential features 

of software projects that play an important role in predicting 

software failure. The selected optimal features of the data set 

convert into RGB color images, and the images are set as the 

input of the VGG 16 deep learning network. The role of the 

convolutional neural network is to classify the examples of 

software projects into two classes: failure and success. The 

experiments performed on the NASA software project 

dataset show that the proposed method in predicting the 

failure of software projects has an accuracy, sensitivity, and 

precision of 96.69%, 96.32%, and 96.13%, respectively. 

Without balancing the data set, the proposed method has an 

accuracy, sensitivity, and precision of 90.98%, 89.69%, and 

89.02%, respectively. Balancing the data set with the GAN 

and SMOTE neural network increases the accuracy of the 

proposed failure prediction model. The proposed method 

accurately predicts software failure from neural networks 

such as MLP, RNN, LSTM, and Bi-LSTM. The proposed is 

more accurate in predicting software failure than WOA, 

HHO, AVOA, JSO, and COA algorithms. 

 The main advantage of the proposed method (GCV) is 

balancing the data set and increasing the examples of 

software projects with precise methods based on game 

theory. Another advantage of the proposed method is the 

intelligent selection of features of software projects in 

predicting software failure. Another advantage of the 

proposed method (GCV) is the ability to generate artificial 

samples by combining GAN and SMOTE. The proposed 

method is more accurate than some deep learning and 

machine learning methods for predicting the failure of 

software projects. In addition to the mentioned advantages, 

the proposed method has several challenges. The 

disadvantages of the proposed method are the prediction 

model's complexity and the uncertainty of meta-heuristic 

algorithms in feature selection. In future work, a hybrid 

neural network based on CNN-LSTM architecture will be 

used to classify software projects into failure and success. 

Another future work is extracting features from the 

programming code of software projects with natural 

processing language (NLP) and pre-trained BERT networks. 
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