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Abstract 

The supply chain inherently possesses a high degree of complexity, which has become increasingly exacerbated due to 

globalization, market expansion, and the continuous evolution of customer preferences. This growing complexity may lead 

to asset invisibility, inefficient inventory management, or logistical mismanagement. These complications often culminate 

in the well-known phenomenon of the "Bullwhip Effect" (BE) within supply chains. The aim of this study is to identify the 

key enablers that effectively reduce the Bullwhip Effect in the automotive supply chain sector. This research is descriptive 

in methodology and applied in purpose. To determine the importance of critical enablers influencing the mitigation of the 

Bullwhip Effect, a thorough review of the literature was first conducted to identify a preliminary list of significant enablers. 

Subsequently, using the Fuzzy Delphi Method, the final set of influential enablers for minimizing the Bullwhip Effect in the 

automotive supply chain was identified. To analyze the interrelationships among the 13 foundational enablers—based on 

literature and data collected through questionnaires—the study employed Fuzzy Cognitive Mapping (FCM) and Interpretive 

Structural Modeling (ISM) to determine the most impactful enablers. FCMapper software was used for the FCM method, 

while Excel software facilitated the ISM approach. Based on centrality metrics within the Fuzzy Cognitive Mapping 

approach, five enablers were found to be critically important: information quality in the supply chain, big data, supply chain 

flexibility, customer relationship management, and trust in the supply chain. Additionally, business intelligence, visibility 

capability, supply chain agility, order volume, information sharing capability, coordination and collaboration in the supply 

chain, supply chain integration and transparency, and delivery time were ranked sixth to thirteenth, respectively. According 

to the ISM results, the following enablers were identified in order of significance as the primary factors in reducing the 

Bullwhip Effect in the automotive supply chain: big data, business intelligence, information sharing capability, integration 

and transparency, trust in the supply chain, delivery time, coordination and collaboration, visibility capability, information 

quality, customer relationship management, order volume, supply chain agility, and flexibility. 
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1. Introduction 

The globalization of business markets and intensifying 

global competition have created an increasingly uncertain 

environment for manufacturing organizations. As a result, 

managers of such organizations must exert greater effort and 

engage in more strategic planning to ensure organizational 

survival. The supply chain is a complex structure 

characterized by numerous and diverse inputs and outputs as 

well as a wide range of stakeholders, making its management 

highly challenging (Bozarth et al., 2009). Consequently, it 

faces numerous issues, the most common of which include a 

lack of transparency, low traceability, smuggling, product 

and document counterfeiting, excessive bureaucracy, the 
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bullwhip effect, high rates of human error, and difficulties in 

tracking financial transactions. Modern technologies offer 

potential solutions to many of these problems [1, 2]. 

All of these complexities negatively affect supply chain 

performance and heighten supply chain threats, including the 

Bullwhip Effect (BE). Transactional delays, increased costs, 

and the erosion of trust among stakeholders are among the 

most significant risks. The Bullwhip Effect, first identified 

by Forrester (1958) through a case study in supply chain 

management, can be effectively mitigated through the use of 

modern technologies [3]. According to Forrester’s theory, 

this amplification arises due to non-zero lead times and 

inaccurate demand forecasts—largely driven by the absence 

of timely information feedback across supply chain tiers [1]. 

In addition, Lee et al. (1997) examined the propagation of 

demand variability and its triggers, coining the term 

“Bullwhip Effect” to describe this phenomenon. Overall, the 

BE fosters instability within production and distribution 

systems, significantly impairing their operational and 

financial performance [4, 5]. 

The Bullwhip Effect is widely prevalent in supply chains 

and is one of the most critical areas in supply chain 

management research [6]. Moreover, market demand is 

becoming increasingly random due to intensifying market 

competition and the unpredictability of consumer 

preferences [7]. 

Today, the development of advanced technologies has 

opened new avenues for scientific study in supply chain 

coordination (SCC) [3, 8]. In practice, many well-known 

companies such as Apple, IBM, and Walmart have actively 

begun integrating modern technologies into their operational 

management processes [1, 2, 9-13]. 

Big data plays a pivotal role in demand forecasting and 

the reduction of the BE [11, 14]. Through real-time 

information sharing across the supply chain, cloud 

computing can reduce information inconsistencies and time 

delays, thus minimizing the BE [15-17]. 

Recent literature has increasingly emphasized the role of 

advanced digital technologies—such as blockchain, big 

data, artificial intelligence, business intelligence, and supply 

chain agility—in mitigating the Bullwhip Effect (BE) and 

enhancing supply chain performance. Coordination and 

transparency have emerged as central themes, with studies 

such as Ran et al. (2020) highlighting the resistance of 

supply chain actors to adopting digital tools, even under 

collaborative contract frameworks. Sarfaraz et al. (2021, 

2023) and Al-Sukhni & Migdalas (2021) proposed 

blockchain-based architectures to improve trust, visibility, 

and data sharing, thereby reducing BE in multi-tiered supply 

chains [18]. Hsu et al. (2021), Nyamukoroso (2022), and 

Zeng et al. (2022) demonstrated that big data analytics and 

supply chain agility significantly contribute to dampening 

demand variability and fostering sustainability [7, 11, 15]. 

Similarly, Sundarakani et al. (2021) examined blockchain's 

utility in Industry 4.0 and visibility enhancement, noting that 

appropriate data-sharing frequencies are vital [19]. Rossi 

(2022) compared traditional and technology-enabled 

approaches, concluding that collaborative strategies, 

although complex, outperform pure technological reliance 

[5]. Ghode et al. (2022) and Sarkar et al. (2023) emphasized 

the benefits of information symmetry through blockchain 

and demand data sharing [10, 20]. Papanagnou (2022) 

explored the IoT's role in reducing inventory variance and 

BE in closed-loop supply chains. Moreover, studies by Jafari 

et al. (2023) and Raj et al. (2023) explored the influence of 

business intelligence and artificial intelligence, respectively, 

with the latter offering a structured framework grounded in 

digital skills, leadership, and collaboration to combat BE 

[14, 21]. Collectively, this body of work highlights a 

paradigm shift from isolated technology adoption to 

integrated, agility-driven, and trust-based digital ecosystems 

aimed at improving supply chain resilience and minimizing 

the Bullwhip Effect. 

The presence of multiple enablers that influence supply 

chain performance and the Bullwhip Effect—as well as the 

interconnectedness of most of these events—motivated the 

current research. This study aims to examine, define, and 

analyze various enabling factors and to develop a model 

representing the enabling events in supply chains that 

contribute to reducing the BE. This model can be used by 

researchers and practitioners alike to assess their impact on 

supply chains and systems designed to mitigate the BE. To 

define and analyze the enabling factors affecting supply 

chain performance, the study relies on expert knowledge in 

supply chain processes. For modeling and quantifying these 

factors, Fuzzy Cognitive Mapping (FCM) and Interpretive 

Structural Modeling (ISM) are employed. 

FCM is a problem-structuring method regarded as a 

suitable and established tool for designing interpretive and 

knowledge-based systems. Fuzzy Cognitive Mapping is a 

hybrid soft-computational approach that integrates 

characteristics of fuzzy logic, nonlinear models, system 

dynamics, and neural network techniques. FCMs are used to 

represent expert knowledge through interconnected causal 

nodes that simulate scenario-specific models. Owing to their 

simplicity and flexibility in modeling and designing 
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complex systems, FCMs have gained widespread 

application in various domains [22]. Moreover, FCMs are 

well-suited for decision-making and event-based analysis in 

complex and dynamic systems such as supply chains, as they 

facilitate the execution of “what-if” scenarios, enabling 

decision-makers to understand the impact of supply chain 

changes based on causal relationships among supply chain 

factors. 

ISM is an exploratory method grounded in the 

interpretive paradigm, designed to identify and 

hierarchically structure relationships among indicators. This 

method helps uncover causal and complex relational patterns 

within a set of factors. ISM illustrates the interrelationships 

between elements in a complex system and can be used to 

analyze the influence of one variable on others. In general, 

the ISM algorithm is an iterative process in which a set of 

interconnected elements is structured into a comprehensive 

and systematic model. This method also enables 

prioritization and hierarchical classification of system 

elements [23]. 

In this study, given that a hybrid approach combining 

FCM and ISM is employed to analyze enablers in the 

automotive industry, and since these techniques establish a 

feedback network among identified enablers, they allow for 

a more in-depth analysis of interactions and relationships 

within the system. Consequently, fundamental enablers in 

mitigating the BE are more precisely studied and can be 

effectively reduced through appropriate interventions. The 

central research question of this study is: What are the key 

enablers for reducing the Bullwhip Effect in the automotive 

supply chain, and what role do they play in its mitigation? 

2. Methodology 

This study is applied in terms of purpose and involves 

both quantitative and qualitative variables, thus employing a 

mixed-methods approach. It is categorized as a descriptive 

study and is conducted using a survey method. For 

conducting the research, based on a review of the literature 

and scientific articles related to the Bullwhip Effect in 

supply chains, the relevant enablers were identified and 

compiled into a questionnaire, which was then distributed to 

experts. These experts included academic professionals in 

the field of supply chain management and managers from 

Iran's automotive industry, all of whom were familiar with 

supply chain enablers and the concept of the Bullwhip 

Effect. 

Sampling was conducted using the Fuzzy Delphi Method. 

Since the goal of the research is not to generalize the results, 

purposive sampling was applied. The criteria for selecting 

experts included theoretical proficiency, practical 

experience, willingness and ability to participate in the 

study, and accessibility.  

To achieve the objectives of the study, the relevant 

literature was synthesized, and the enablers identified as 

effective in reducing the Bullwhip Effect were extracted and 

categorized. Subsequently, using the fuzzy cognitive 

mapping (FCM) methodology, the enabler components were 

structured and analyzed. A hybrid approach combining FCM 

and Interpretive Structural Modeling (ISM) was used for 

analysis in the automotive industry. These techniques 

facilitate better analysis of system interactions and 

relationships by creating a feedback network among the 

identified elements. As a result, the fundamental problems 

related to the Bullwhip Effect are studied with greater 

precision and can be mitigated through appropriate actions. 

The software used to implement the fuzzy cognitive 

mapping technique was FC-Mapper; diagram visualization 

was performed using Visio 2019; and ISM was executed 

using Excel 2019. 

Table 1. Demographic Characteristics of the Sample Participants 

Classification Frequency Percentage 

Managerial Experience 

  

More than 5 years 5 50% 

More than 10 years 8 50% 

Total 13 100% 

Educational Qualification 

  

Master’s Degree 8 80% 

Doctorate 5 20% 

Total 13 100% 

Total Years of Experience 

  

10 to 20 years 7 70% 

More than 20 years 6 30% 

Total 13 100% 
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Number of Employees in Organization 

  

Fewer than 15,000 3 10% 

15,000–30,000 3 30% 

More than 30,000 7 60% 

Total 13 100% 

Organizational Turnover (in thousand billion IRR) 

  

Less than 30 2 10% 

30–45 4 30% 

45–60 7 60% 

Total 13 100% 

 

The primary objective of this study is to design and 

analyze enablers within the automotive supply chain to 

reduce the Bullwhip Effect and examine the interactions 

among influencing factors based on Fuzzy Cognitive 

Mapping (FCM) and Interpretive Structural Modeling 

(ISM). Therefore, based on a hybrid approach, the factors 

contributing to reducing the Bullwhip Effect in the supply 

chain are first identified through big data and business 

intelligence. Then, by designing FCM and ISM models, the 

quality and interrelationships of the core supply chain 

enablers in mitigating the Bullwhip Effect are analyzed, as 

detailed in the following sections. 

3. Findings and Results 

In the first stage of the research, the Fuzzy Delphi Method 

was used to screen the enablers identified from the literature 

review. In this study, the distributed questionnaire among the 

experts employed a five-point Likert scale, where the 

significance of each factor was evaluated using linguistic 

variables (Table 2). In various studies, a Delphi expert group 

may consist of 10 to 20 members, provided that consensus 

exists among the group. In this research, the sample size was 

determined to be 13 individuals. After the initial round of 

questionnaire collection, the results of the first round were 

sent back to the experts to allow them to revise their 

judgments, if necessary, based on the preliminary outcomes. 

After collecting and analyzing the experts' responses in 

the second round, the mean difference was examined. If the 

difference was less than 0.2, consensus was considered to 

have been achieved, and the Fuzzy Delphi process was 

concluded. Otherwise, the questionnaire would be sent to the 

experts once again. This iterative data collection process 

would continue until consensus was reached. 

In the final step, to confirm the variables and key 

operators for reducing the Bullwhip Effect (BE) in the 

supply chain (SC) through Big Data (BD) and Business 

Intelligence (BI), the average score of each factor was 

compared to a threshold value (0.7). For this purpose, the 

linguistic terms used in expert evaluations were first 

converted into triangular fuzzy numbers, and then their 

fuzzy mean values were calculated to determine the average 

of the n expert responses. Table 2 presents the scale used to 

convert linguistic values into their equivalent triangular 

fuzzy numbers.  

Table 2. Linguistic Terms and Their Equivalent Triangular Fuzzy Numbers 

Linguistic Term Triangular Fuzzy Number 

Very High (7, 9, 9) 

High (5, 7, 9) 

Medium (3, 5, 7) 

Low (1, 3, 5) 

Very Low (1, 1, 3) 

 

Based on the above discussion, the statistical analysis 

results reviewed and interpreted at each stage by automotive 

domain experts and the authors are presented in Table 4. The 

13 factors with the highest mean values and lowest standard 

deviations compared to others were identified as the key 

variables and operators for reducing the performance of the 

Bullwhip Effect in the automotive supply chain through the 

application of BD and BI. 

In the first round of the Fuzzy Delphi Method, experts 

primarily assessed Bullwhip Effect enablers based on Big 

Data and Business Intelligence, extracted from the literature. 

In that stage, 30 enablers were identified as relatively more 

important. Next, to calculate the importance of these 

enablers, a questionnaire was distributed in the first round of 

the Delphi process asking experts to rate their significance. 

After analyzing the results, a second-round Delphi 
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questionnaire was sent out, including the mean scores of 

each enabler from round one for expert reconsideration. 

Analysis of the second-round responses revealed that, for 

five enablers, the average difference in expert judgments 

between rounds one and two exceeded 0.2. Therefore, a 

third-round Delphi questionnaire containing the second-

round average scores for each enabler was sent to the 

experts. Since the differences in expert judgments between 

the second and third rounds for all enablers were less than 

0.2, consensus was achieved. Thirteen enablers had average 

scores greater than 0.7 and were thus identified as the core 

variables and operators for mitigating the Bullwhip Effect in 

the automotive supply chain using BD and BI. The final 

results of the third round of the Fuzzy Delphi Method are 

presented in Table 3. 

The results of the third round of the Fuzzy Delphi method 

are presented in Table 3. 

Table 3. Results of the Fuzzy Delphi Method 

Linguistic Terms Very 

Low 

Low Medium High Very 

High 

Mean Difference Approved / 

Rejected 

Fuzzy Values (1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9) 

   

Use of blockchain in the supply chain 1 3 6 3 0 4.743 0.122 Rejected 

Use of AI in the supply chain 0 4 2 4 3 5.769 0.133 Rejected 

Supply chain flexibility 0 0 2 4 7 7.410 0.133 Approved 

Information quality in the supply chain 0 0 3 5 5 7.051 0.000 Approved 

Demand uncertainty in the supply chain 3 2 4 4 0 4.538 0.133 Rejected 

Environmental uncertainty and risk in the supply 

chain 

2 1 4 4 2 5.461 0.133 Rejected 

Supply chain agility 0 0 2 5 6 7.307 0.000 Approved 

Customer relationship management 1 0 1 5 6 7.051 0.011 Approved 

Supply chain optimization 1 3 6 3 0 4.743 0.133 Rejected 

Use of IoT in the supply chain 2 5 4 2 0 4.025 0.133 Rejected 

Organizational commitment to new technologies 1 2 3 5 2 5.717 0.133 Rejected 

Delivery time in the supply chain 0 1 1 6 5 7.051 0.110 Approved 

Supply chain speed capability 2 1 5 3 2 5.307 0.122 Rejected 

Supply chain variety capability 3 1 5 3 1 4.794 0.122 Rejected 

Value and accuracy of supply chain data 1 5 5 2 0 4.282 0.133 Rejected 

Supply chain integration and transparency 0 1 2 3 7 7.102 0.133 Approved 

Coordination and collaboration in the supply 

chain 

0 1 2 4 6 7.000 0.000 Approved 

Customer service management 2 0 3 5 3 6.025 0.133 Rejected 

Trust in the supply chain 0 0 2 7 4 7.102 0.011 Approved 

Digital transformation and social media 2 2 3 6 0 5.102 0.122 Rejected 

Availability and predictive analytics 0 2 5 4 2 5.820 0.122 Rejected 

Order volume in the supply chain 0 0 1 5 7 7.564 0.000 Approved 

Behavioral roles in the supply chain 2 1 6 3 1 5.051 0.133 Rejected 

Information sharing capability 0 0 0 2 11 8.128 0.133 Approved 

Visibility capability 0 2 5 6 – 7.307 0.133 Approved 

Management team skills 1 1 8 1 2 5.256 0.122 Rejected 

Increased connectivity via cloud computing 1 2 5 3 2 5.410 0.133 Rejected 

Innovation capability in the supply chain 0 0 7 3 3 6.230 0.133 Rejected 

Business intelligence (BI) 0 0 1 6 6 7.461 0.133 Approved 

Big data (BD) 0 0 1 7 5 7.358 0.000 Approved 

 

According to the results, the following indicators were 

selected as the core enablers for implementing the second 

phase of the study: supply chain flexibility, trust in the 

supply chain, information quality, supply chain agility, 

customer relationship management, delivery time, 

integration and transparency, coordination and 

collaboration, order volume, information sharing capability, 

visibility, business intelligence, and big data (Table 4). 

Table 4. Core Variables and Operators for the Second Phase of the Study to Reduce the Bullwhip Effect (BE) in the Supply Chain through 

Big Data (BD) and Business Intelligence (BI) 

No. Factor References 



 Danandeh et al. 

 6 

H1 Supply Chain Flexibility (FSC)+ [14, 16, 17] 

H2 Trust in the Supply Chain (TSC)+ [24, 25] 

H3 Information Quality in the Supply Chain (IQSC)+ [26-28] 

H4 Supply Chain Agility (ACSC)+ [11, 15, 21, 29] 

H5 Customer Relationship Management (CRM)+ [1, 30] 

H6 Delivery Time in the Supply Chain (LTSC)+ [9, 31] 

H7 Integration and Transparency in the Supply Chain (ITSC)+ [32, 33] 

H8 Coordination and Collaboration in the Supply Chain (CCSC)+ [32] 

H9 Order Volume in the Supply Chain (OVSC)+ [20, 34, 35] 

H10 Information Sharing Capability (ISC)+ [20, 34-36] 

H11 Visibility Capability (VC)+ [16] 

H12 Business Intelligence (BI)+ [3, 37] 

H13 Big Data (BD)+ [1, 38] 

 

In this study, after identifying the key variables and 

operators for reducing the performance of the Bullwhip 

Effect (BE), the initial matrix was constructed based on 

expert questionnaires and the scores they assigned to thirteen 

selected factors. All thirteen identified factors are positively 

associated with reducing the Bullwhip Effect. The scores 

given by the experts to the questionnaire items — with rows 

representing key enablers of BE mitigation in the supply 

chain (SC) through Big Data (BD) and Business Intelligence 

(BI), and columns representing the experts — indicate the 

impact level of each factor on the supply chain. The Likert 

scale used in the questionnaire includes five degrees, 

represented by the values 1, 3, 5, 7, and 9. A score of 1 

indicates very low impact, 3 indicates low impact, 5 

indicates moderate impact, 7 indicates high impact, and 9 

indicates very high impact. 

After analyzing the questionnaire data, the Initial Success 

Matrix (IMS) was constructed, shown in Table 5. 

Table 5. Initial Success Matrix (IMS) 

Xi(Oij) Expert 

1 

Expert 

2 

Expert 

3 

Expert 

4 

Expert 

5 

Expert 

6 

Expert 

7 

Expert 

8 

Expert 

9 

Expert 

10 

Expert 

11 

Expert 

12 

Expert 

13 

C1 5 5 7 7 9 9 9 9 9 9 9 9 9 

C2 5 7 7 7 9 9 9 9 9 9 9 9 9 

C3 7 7 7 7 7 9 9 9 9 9 9 9 9 

C4 7 7 7 7 7 9 9 9 9 9 9 9 9 

C5 3 5 5 7 7 7 9 9 9 9 9 9 9 

C6 5 5 5 9 9 9 9 7 7 7 9 9 9 

C7 5 5 9 9 9 9 9 9 9 9 7 7 7 

C8 5 9 9 9 9 7 7 7 9 9 9 9 9 

C9 9 9 9 5 5 5 7 7 9 9 9 9 9 

C10 9 9 9 9 9 9 7 7 9 9 9 9 9 

C11 9 9 9 9 9 9 7 7 9 9 9 9 9 

C12 9 9 9 9 9 9 7 7 9 9 9 9 7 

C13 9 9 9 9 9 9 9 9 9 9 9 9 9 

 

It should be noted that the rows of this matrix correspond 

to the 13 enablers identified as influential in reducing the 

Bullwhip Effect, while the columns represent the responses 

of each of the 13 experts. 

Not all key success factors in the matrix are interrelated, 

nor do they always exhibit causal relationships. To analyze 

the data and convert the influence matrix into the final 

matrix, it must be understood that only fuzzy elements 

indicating causal relations between factors are included in 

the Fuzzified Matrix (FZMS). 

Table 6. Fuzzified Matrix of Factors (FZMS) 

Xi(Oij) Expert 

1 

Expert 

2 

Expert 

3 

Expert 

4 

Expert 

5 

Expert 

6 

Expert 

7 

Expert 

8 

Expert 

9 

Expert 

10 

Expert 

11 

Expert 

12 

Expert 

13 

C1 0.33 0.33 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

C2 0.33 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

C3 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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C4 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

C5 0.00 0.33 0.33 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

C6 0.33 0.33 0.33 1.00 1.00 1.00 1.00 0.67 0.67 0.67 1.00 1.00 1.00 

C7 0.33 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 0.67 

C8 0.33 1.00 1.00 1.00 1.00 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 

C9 1.00 1.00 1.00 0.33 0.33 0.33 0.67 0.67 1.00 1.00 1.00 1.00 1.00 

C10 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 

C11 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 

C12 1.00 1.00 1.00 1.00 1.00 1.00 0.67 0.67 1.00 1.00 1.00 1.00 0.67 

C13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

The Success Relationship Matrix (SRMS) is an N × N 

matrix where both the rows and columns represent the main 

enablers of performance reduction in the Bullwhip Effect 

through BD and BI, and each element (Wij) represents the 

relationship strength between factors i and j, with values 

ranging from –1 to 1. 

Table 7. Success Relationship Matrix (SRMS) 

 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

C1 0.00 0.97 0.92 0.92 0.90 0.87 0.87 0.92 0.70 0.80 0.70 0.80 0.84 

C2 0.97 0.00 0.89 0.86 0.87 0.89 0.89 0.89 0.84 0.92 0.84 0.92 0.80 

C3 0.92 0.89 0.00 0.96 0.92 0.70 0.70 0.70 0.77 0.92 0.84 0.77 0.89 

C4 0.92 0.86 0.96 0.00 0.84 0.75 0.75 0.75 0.74 0.84 0.77 0.74 0.86 

C5 0.90 0.87 0.92 0.84 0.00 0.92 0.92 0.92 0.70 0.75 0.72 0.75 0.74 

C6 0.87 0.89 0.70 0.75 0.92 0.00 0.86 0.86 0.74 0.84 0.77 0.84 0.75 

C7 0.87 0.89 0.70 0.75 0.92 0.86 0.00 0.86 0.74 0.84 0.77 0.92 0.70 

C8 0.92 0.89 0.70 0.75 0.92 0.86 0.86 0.00 0.92 0.87 0.92 0.87 0.80 

C9 0.70 0.84 0.77 0.74 0.70 0.74 0.74 0.92 0.00 0.86 0.80 0.86 0.77 

C10 0.80 0.92 0.92 0.84 0.75 0.84 0.84 0.87 0.86 0.00 0.96 0.90 0.87 

C11 0.70 0.84 0.84 0.77 0.72 0.77 0.77 0.92 0.80 0.96 0.00 0.89 0.92 

C12 0.80 0.92 0.77 0.74 0.75 0.84 0.92 0.87 0.86 0.90 0.89 0.00 0.92 

C13 0.84 0.80 0.89 0.86 0.74 0.75 0.70 0.80 

     

 

In this study, a focus group comprising six members was 

formed to develop the final matrix. The focus group 

consisted of six automotive industry experts in Iran with 

experience in supply chain management. Based on their 

opinions, meaningless connections between the factors were 

eliminated, and the causal directions of relationships were 

determined. This matrix represents a refined portion of the 

Success Relationship Matrix (SRMS) tailored by the 

automotive supply chain expert group. Not all key success 

factors in the matrix are interrelated, and causal relationships 

do not always exist among them. For data analysis and the 

conversion of the SRMS into the Final Matrix of Success 

(FMS), only fuzzy elements indicating valid causal 

relationships were retained, and those without meaningful 

causal links were excluded. The results of this review are 

presented in Table 8. 

Table 8. Final Matrix of Success (FMS) 

 

FSC TSC IQSC ACSC CRM LTSC ITSC CCSC OVSC ISC VC BI BD 

FSC 0.00 0.97 0.92 0.00 0.90 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TSC 0.97 0.00 0.89 0.00 0.87 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

IQSC 0.92 0.89 0.00 0.96 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ACSC 0.92 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CRM 0.90 0.87 0.92 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LTSC 0.87 0.89 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ITSC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CCSC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 

OVSC 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 

ISC 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 

VC 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 

BI 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BD 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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In the graphical representation of this model, each node 

corresponds to one of the key enablers for mitigating the 

Bullwhip Effect in the supply chain using BD and BI. Each 

edge between nodes i and j—assigned a specific weight—

reflects the strength and direction (direct or inverse) of the 

causal relationship between these factors. The causal 

direction vector was established based on input from a focus 

group of three supply chain managers from the automotive 

sector.  

Based on the fuzzy cognitive mapping model, the core 

enablers were classified into two groups according to their 

proximity in relationship structure: 

• Group 1 – BI-related enablers: 

o Supply Chain Flexibility (FSC) 

o Trust in the Supply Chain (TSC) 

o Information Quality (IQSC) 

o Agility in the Supply Chain (ACSC) 

o Customer Relationship Management 

(CRM) 

• Group 2 – BD-related enablers: 

o Delivery Time (LTSC) 

o Integration and Transparency (ITSC) 

o Coordination and Collaboration (CCSC) 

o Order Volume (OVSC) 

o Information Sharing Capability (ISC) 

o Visibility Capability (VC) 

These enablers play a vital role in mitigating the Bullwhip 

Effect in the automotive supply chain. 

Other outputs of the FCM analysis include three key 

indicators: outdegree (influence), indegree (dependence), 

and centrality—summarized in Table 10. Outdegree reflects 

the cumulative absolute impact of an enabler on others. 

Indegree represents the extent to which a given enabler is 

influenced by the others. Centrality, being the sum of both, 

reflects the overall systemic interaction of each enabler. 

Table 9. Indices of Core Dimensions in the FCM Model 

Dimension Code Outdegree Indegree Centrality 

Supply Chain Flexibility A1 2.69 3.44 6.14 

Trust in the Supply Chain A2 2.58 2.58 5.17 

Information Quality in the Supply Chain A3 2.72 4.73 7.45 

Supply Chain Agility A4 1.36 0.61 1.97 

Customer Relationship Management A5 3.00 3.00 5.99 

Delivery Time A6 2.08 2.08 4.17 

Integration & Transparency A7 0.00 0.00 0.00 

Coordination & Collaboration A8 0.60 0.60 1.19 

Order Volume A9 1.18 0.60 1.77 

Information Sharing Capability A10 1.16 0.60 1.75 

Visibility Capability A11 1.46 0.60 2.06 

Business Intelligence A12 1.49 0.60 2.09 

Big Data A13 2.68 4.64 7.38 

 

The Interpretive Structural Modeling (ISM) algorithm is 

an iterative process where interconnected elements are 

systematically structured into a comprehensive model. A 

specially designed questionnaire based on the BD and BI 

variables (determined earlier via Delphi method) was used 

to identify directional relationships among enablers. Experts 

evaluated these relationships using symbolic indicators, and 

the results were analyzed and compiled into the Structural 

Self-Interaction Matrix (SSIM). 

Using the structural matrix and ordering rules, the matrix 

was constructed according to the following principles: 

1. If the relationship between elements i and j is V, 

then the matrix elements are (i, j) = 1 and (j, i) = 0. 

2. If the relationship between elements i and j is A, 

then the matrix elements are (i, j) = 0 and (j, i) = 1. 

3. If the relationship between elements i and j is X, 

then the matrix elements are (i, j) = 1 and (j, i) = 1. 

4. If there is no relationship, then the matrix elements 

are (i, j) = 0 and (j, i) = 0. 

Table 10. Initial Reachability Matrix (IRM) 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 0 1 1 1 0 0 1 1 0 0 1 1 1 
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3 0 0 1 0 0 1 1 1 1 0 0 1 1 

4 0 0 1 1 0 1 0 1 1 0 0 1 1 

5 0 1 0 1 1 1 0 0 0 0 0 1 1 

6 0 1 0 0 1 1 0 0 0 0 0 1 1 

7 0 0 0 0 0 0 1 0 0 0 0 1 1 

8 0 0 0 0 1 0 0 1 0 0 0 0 1 

9 0 1 0 0 1 0 0 1 1 0 0 1 1 

10 0 1 1 0 0 1 1 0 0 1 1 1 1 

11 0 0 1 0 0 0 1 0 0 0 1 1 1 

12 0 0 0 0 0 0 0 0 0 0 0 1 1 

13 0 0 0 0 0 0 1 0 0 1 1 0 1 

This table presents the reachability matrix derived from 

expert input, where each variable represents one of the 13 

core enablers for reducing the Bullwhip Effect. 

To ensure transitive consistency between elements, the 

initial matrix must be internally consistent. If such 

consistency is achieved, the matrix is called the Final 

Reachability Matrix (FRM). Otherwise, the questionnaire 

must be completed again by the experts until consistency is 

reached, or the matrix must be raised to the (k+1) power until 

a steady state is achieved. In such a case, some of the zero 

elements in the matrix convert to one, denoted as (1*). In this 

study, the second method was used. 

Table 11. Final Reachability Matrix (FRM) 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 Driving Power 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 

2 0 1 1 1 1* 1* 1 1 1* 1* 1 1 1 12 

3 0 1* 1 0 1* 1 1 1 1 1* 1* 1 1 11 

4 0 1* 1 1 1* 1 1* 1 1 1* 1* 1 1 12 

5 0 1 1* 1 1 1 1* 1* 1* 1* 1* 1 1 12 

6 0 1 1* 1* 1 1 1* 1* 0 1* 1* 1 1 11 

7 0 0 0 0 0 0 1 0 0 1* 1* 1 1 5 

8 0 1* 0 1* 1 1* 1* 1 0 1* 1* 1* 1 10 

9 0 1 1* 1* 1 1* 1* 1 1 1* 1* 1 1 12 

10 0 1 1 1* 1* 1 1 1* 1* 1 1 1 1 12 

11 0 1* 1 1* 0 1* 1 1* 1* 1* 1 1 1 11 

12 0 0 0 0 0 0 1* 0 0 1* 1* 1 1 5 

13 0 1* 1* 0 0 1* 1 0 0 1 1 1* 1 8 

 

This matrix shows the final structural interrelationships 

between the 13 enablers. The last column indicates each 

enabler’s driving power, i.e., the number of other elements 

it influences. 

After determining the reachability set, antecedent set, and 

intersection set, the reachability set for each element 

includes all rows where the value is 1, while the antecedent 

set includes all columns where the value is 1. The 

intersection of these two sets yields the common set. 

Elements for which the reachability and intersection sets are 

identical are assigned the first-level priority. This process is 

repeated for all other elements until all levels are classified. 

Based on the variable levels and their relationships, the 

factors of Big Data (BD) and Business Intelligence (BI) in 

the automotive supply chain were classified into five levels 

using the Interpretive Structural Modeling (ISM) approach. 

This classification and the interrelationships demonstrate 

how these variables affect the automotive supply chain. 

Specifically, variables 7, 10, 12, and 13—known as first-

level variables—are placed in level one. Variables 2, 6, 8, 

and 11 are in level two. Variables 3, 5, and 9 are in level 

three. The remaining parameters are assigned to other levels 

as shown in Table 12.  

Table 12. Final Levels of Core Enablers for Reducing the Bullwhip Effect 

Level Intersection Set Antecedent Set Reachability Set Variable 

5 1 1,4 1,4 1 

2 2,3,4,5,6,8,9,11 1,2,3,4,5,6,8,9,11 2,3,4,5,6,8,9,11 2 

3 3,5,9 1,3,4,5,9 3,5,9 3 
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4 4 1,4 4 4 

3 3,4,5,9 1,3,4,5,9 3,4,5,9 5 

2 2,3,4,5,6,8,11 1,2,3,4,5,6,8,9,11 2,3,4,5,6,8,11 6 

1 7,10,11,12,13 1,2,3,4,5,6,7,9,10,11,12,13 7,10,11,12,13 7 

2 2,4,5,6,8,11 1,2,3,4,5,6,8,9,11 2,4,5,6,8,11 8 

3 3,4,5,9 1,3,4,5,9 3,4,5,9 9 

1 2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 2,3,4,5,6,7,8,9,10,11,12,13 10 

2 2,3,4,6,8,9,11 1,2,3,4,5,6,8,9,11 2,3,4,6,8,9,11 11 

1 7,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 7,10,11,12,13 12 

1 2,3,6,7,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 2,3,6,7,10,11,12,13 13 

 

In this study, 13 enablers were identified as the main 

variables and operators for reducing the performance of the 

Bullwhip Effect in the automotive supply chain through BD 

and BI, using both the Fuzzy Cognitive Mapping (FCM) and 

Interpretive Structural Modeling (ISM) approaches. 

First, our research showed that the structural modeling 

behavior validated the results of fuzzy cognitive mapping. 

Second, the interactions revealed by both models were 

consistent. Third, based on the outputs of both models, the 

variables and operators identified were confirmed as the 

fundamental drivers for reducing the Bullwhip Effect in the 

automotive supply chain via BD and BI.  

 

Figure 1. Proposed ISM Model of Core Enablers in Reducing the Bullwhip Effect in the Supply Chain 

 

4. Discussion and Conclusion 

The primary objective of this study was to identify and 

structurally analyze the main enablers for reducing the 

Bullwhip Effect (BE) in the automotive supply chain 

through the integrated application of Big Data (BD) and 

Business Intelligence (BI), using a hybrid methodological 

approach of Fuzzy Cognitive Mapping (FCM) and 

Interpretive Structural Modeling (ISM). The findings from 

both FCM and ISM converged on a set of 13 enablers, 

among which “information sharing capability,” “visibility 

capability,” “customer relationship management,” and “trust 

in the supply chain” emerged as particularly influential 

based on their high centrality and driving power. 

The results from the FCM model revealed that 

“information quality,” “big data,” and “business 
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intelligence” are among the most central variables with the 

highest combined influence and dependence scores, 

suggesting that the effective management of information 

flow is crucial in mitigating the amplifying demand 

distortions characteristic of the Bullwhip Effect. This is 

consistent with the findings of Al-Sukhni and Migdalas 

(2021), who proposed a blockchain architecture to enhance 

end-to-end visibility by sharing backlog data among 

partners, significantly reducing BE through secure and 

transparent data exchange [18]. Likewise, Ghode et al. 

(2022) emphasized the potential of blockchain-enabled 

distributed ledgers in allowing all supply chain partners to 

access real-time demand data, thereby enhancing planning 

accuracy and dampening demand variability [10]. 

In terms of structural hierarchy derived from ISM, 

variables such as “integration and transparency,” 

“information sharing,” and “coordination and collaboration” 

occupied lower levels, denoting foundational status in the 

hierarchy. Their role as root drivers of system-wide 

improvement highlights the necessity of addressing these 

elements first when planning interventions. Sarfaraz et al. 

(2021) underscored the importance of such transparency and 

inter-organizational trust, noting that complete visibility of 

demand data combined with collaborative behavior among 

partners minimizes BE and optimizes supply chain 

efficiency [34]. The finding that these foundational factors 

lead to cascading improvements in agility, flexibility, and 

performance aligns with previous research by Hsu et al. 

(2021), who showed that agility is strengthened when 

supported by robust big data systems [11]. 

Additionally, the role of “customer relationship 

management” and “trust” emerged strongly as mediating 

enablers in both the FCM and ISM models. These findings 

confirm the importance of human and relational dimensions 

within technological ecosystems. Similarly, Sarfaraz et al. 

(2023) validated the positive impact of blockchain-

facilitated trust-building mechanisms, which ultimately 

reduce uncertainty and variability in supply-demand 

dynamics [35]. 

The study also found that enablers such as “agility,” 

“flexibility,” and “order volume control” held significant 

influence, especially in the mid-levels of the ISM hierarchy. 

These are more operational or executional enablers that 

depend heavily on foundational inputs such as BD, BI, and 

information sharing. Nyamukoroso (2022) and Zeng et al. 

(2022) both proposed that enhancing agility through 

improved big data analytics enables firms to respond faster 

to fluctuations, thus smoothing out disruptive spikes in order 

flows [7, 15]. Our findings resonate with this logic, showing 

that agility and flexibility are dependent constructs that 

materialize only when foundational data systems and 

organizational cooperation mechanisms are in place. 

From a comparative methodological standpoint, the FCM 

results provided nuanced insights into the causal loops and 

strength of relationships, while ISM confirmed the structural 

order and interdependency levels among the enablers. The 

mutual validation of these two models enhances the 

reliability of the conceptual framework presented. Notably, 

this dual confirmation aligns with the results of Jafari et al. 

(2023), who used a combination of qualitative and 

quantitative approaches to confirm the reinforcing roles of 

BI, integration, and agility in optimizing supply chain 

performance. They similarly concluded that BI had the 

strongest direct effect, a finding mirrored in our FCM 

centrality rankings [21]. 

Moreover, the current research affirms the relevance of 

emerging technologies such as blockchain and artificial 

intelligence (AI) in supply chain coordination strategies. Raj 

et al. (2023) emphasized that AI, when integrated within a 

structured managerial framework, serves as a potent tool for 

smoothing demand signals and enhancing planning 

responsiveness. Though AI was not directly modeled in our 

current enabler set, the presence of BI and BD as proxies for 

advanced analytics echoes the call for data-driven 

architectures to address BE [14]. Similarly, Rossi (2022) 

compared traditional coordination contracts with data-

intensive systems and concluded that, while collaboration-

based methods are complex, big data approaches offer 

scalable and impactful alternatives for BE mitigation [5]. 

Interestingly, the results also indicated some reluctance 

among firms to adopt digital technologies unless there is a 

direct and visible benefit or a contractual framework that 

supports such adoption. This insight reflects the findings of 

Ran et al. (2020), who observed that suppliers and retailers 

often hesitate to use digital tools like blockchain or big data 

in the absence of mutual incentives, even in cost-sharing or 

revenue-sharing arrangements. This behavioral barrier 

further underscores the need for well-aligned incentives and 

trust-building mechanisms—particularly when deploying 

transformative technologies across the supply chain [32]. 

Finally, the integration of digital tools such as BD and BI 

with relational capabilities—like trust, coordination, and 

transparency—results in a synergistic framework that 

significantly contributes to BE reduction. Sundarakani et al. 

(2021) contextualized this within the realm of Industry 4.0, 

showing that such integration offers not just technological 
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advancement but also strategic alignment, thus enhancing 

both short-term responsiveness and long-term resilience 

[19]. These insights collectively strengthen the argument 

that technological adoption alone is insufficient; rather, the 

success of digital transformation depends on how well these 

technologies are embedded within human and organizational 

processes. 

This study, while comprehensive in modeling the 

enablers of Bullwhip Effect reduction using BD and BI, is 

limited by its focus on the automotive supply chain in Iran, 

which may affect the generalizability of the findings to other 

industrial sectors or global supply chain contexts. The expert 

sample, though experienced, was relatively small and 

concentrated within a specific region, which may have 

introduced regional or sectoral bias in the weightings and 

causal assessments. Additionally, while the hybrid use of 

FCM and ISM adds rigor, the models are still dependent on 

subjective expert judgment, which, despite efforts to reach 

consensus, can introduce variability and limit replicability. 

Future studies could expand the scope of the current 

research by including cross-industry and multi-national 

comparative analyses to test the validity of the proposed 

model across different sectors and geographies. A 

longitudinal design could also be employed to evaluate how 

changes in digital maturity and trust dynamics influence the 

structural relationships among enablers over time. 

Moreover, integrating simulation-based methods or system 

dynamics modeling could provide further depth by 

analyzing how specific interventions (e.g., adoption of a new 

BI tool) influence the temporal behavior of the Bullwhip 

Effect under varying market conditions. 

For practitioners, the study highlights the need to 

prioritize investments in foundational enablers such as data 

integration, information visibility, and trust-building before 

focusing on advanced agility tools. Supply chain managers 

should adopt a phased approach to digital transformation, 

ensuring that relational and organizational capacities are 

developed in tandem with technological upgrades. 

Establishing formal mechanisms for information sharing and 

data governance, supported by blockchain or BI systems, can 

facilitate smoother coordination and foster trust. These 

efforts, in turn, are likely to result in a more responsive, 

resilient, and BE-resistant supply chain ecosystem. 
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