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Abstract 

With the rapid increase in energy consumption and the expansion of renewable energy usage, microgrids have emerged as 

an effective solution for enhancing the sustainability, flexibility, and efficiency of power systems. In this study, an adaptive 

two-layer Energy Management System (EMS) is designed and presented for microgrids. The first layer utilizes Mixed-

Integer Linear Programming (MILP) with a rolling horizon strategy to focus on economic optimization over a medium-term 

horizon. The second layer employs nonlinear optimization using the Particle Swarm Optimization (PSO) algorithm to 

accurately manage short-term and real-time network conditions. Additionally, intelligent forecasting models based on deep 

learning, such as Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM), are used to improve the 

accuracy of load and meteorological parameter predictions. A precise model of the Battery Energy Storage System (BESS), 

considering converter efficiency, aging processes, and optimal charging strategies, is also proposed as part of the innovation. 

Simulation results demonstrate that the proposed two-layer structure exhibits high adaptability to uncertainties and can 

significantly improve performance, reduce costs, and enhance the sustainability of microgrids. 
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1. Introduction 

The accelerating pace of global energy demand, coupled 

with the widespread integration of renewable energy 

resources, has fundamentally reshaped the architecture and 

management requirements of modern power systems. 

Traditional centralized power generation models are 

increasingly being challenged by decentralized, flexible, and 

sustainable alternatives that can address both technical and 

environmental imperatives. Among these alternatives, 

microgrids have emerged as an essential component for 

ensuring energy security, efficiency, and resilience, 

particularly in the context of increasing penetration of 

distributed energy resources (DERs) and renewable energy 

technologies [1, 2]. Defined as localized networks of 

interconnected loads and distributed energy resources with 

the capability to operate both in grid-connected and islanded 

modes, microgrids represent a paradigm shift in the way 

energy is generated, managed, and consumed. 

The global impetus toward decarbonization has further 

accelerated microgrid development. Increasingly, 

governments, industries, and institutions are adopting 

renewable-based microgrids as part of sustainability 

initiatives to reduce greenhouse gas emissions and enhance 

reliability [3, 4]. However, the integration of renewables 

introduces high levels of uncertainty and intermittency, 
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creating new operational and technical challenges that 

necessitate intelligent, adaptive, and multi-layered energy 

management systems (EMS). Advanced EMS frameworks 

have been recognized as a cornerstone for overcoming these 

challenges, particularly in managing fluctuations in supply 

and demand, ensuring system stability, and optimizing costs 

[5, 6]. 

The development of EMS for microgrids has been shaped 

by the dual objectives of sustainability and economic 

viability. Early microgrid models emphasized basic 

demand–supply matching but were insufficient to address 

the complex uncertainties introduced by renewables [7]. 

Recent innovations have introduced hierarchical and multi-

layer frameworks designed to balance long-term 

optimization with short-term corrective action. For example, 

the use of mixed-integer linear programming (MILP) and 

mixed-integer second-order cone programming (MISOCP) 

in EMS design enables robust scheduling under uncertainty 

while ensuring computational feasibility [8, 9]. 

Complementing these mathematical frameworks, 

metaheuristic optimization algorithms such as Particle 

Swarm Optimization (PSO) have been incorporated for 

nonlinear, real-time decision-making [10]. 

Hierarchical EMS structures typically include three 

levels: primary control for local devices, secondary control 

for coordination, and tertiary control for interactions with 

external systems [6]. However, the integration of two-layer 

EMS frameworks has proven particularly effective. In such 

systems, the upper layer focuses on medium- to long-term 

economic scheduling, while the lower layer is tasked with 

managing short-term fluctuations and ensuring real-time 

operational stability [8, 11]. This architecture enables a 

balance between profitability and adaptability, mitigating 

the risks posed by unpredictable renewable generation and 

variable demand patterns. 

The growing sophistication of EMS frameworks has been 

underpinned by rapid technological advancements in 

forecasting, optimization, and energy storage systems. 

Forecasting models based on artificial intelligence and deep 

learning have significantly improved prediction accuracy for 

load demand, solar irradiance, and meteorological 

parameters, which are critical for effective EMS operation 

[12, 13]. For example, artificial neural networks (ANN) and 

long short-term memory (LSTM) models have been widely 

adopted to enhance forecasting reliability and thereby 

improve scheduling outcomes [14]. These approaches offer 

a marked improvement over traditional statistical models by 

accounting for nonlinearities and time-dependent variables 

in energy data. 

Energy storage systems, particularly battery energy 

storage systems (BESS), play a pivotal role in enhancing the 

flexibility of microgrids. Accurate modeling of BESS is 

essential for optimizing charge–discharge cycles, extending 

battery lifespan, and reducing costs associated with 

degradation [15]. Studies have emphasized that 

incorporating converter efficiency, calendar aging, and cycle 

aging into BESS models leads to more reliable outcomes in 

EMS optimization [16]. Furthermore, advanced EMS 

frameworks that integrate these models can more effectively 

balance renewable variability, improve operational stability, 

and enhance the financial performance of microgrids [9]. 

The objectives of EMS frameworks in microgrids are 

inherently multi-dimensional, encompassing technical, 

economic, and environmental aspects. From an economic 

perspective, EMS must reduce operational costs, maximize 

revenues from electricity trading, and optimize resource 

utilization [17]. Technical objectives involve maintaining 

voltage and frequency stability, minimizing line losses, and 

ensuring reliable operation under both grid-connected and 

islanded conditions [18]. Environmental objectives 

emphasize minimizing carbon emissions and supporting 

global sustainability goals [3, 4]. 

Increasingly, hybrid strategies that combine these 

objectives are gaining traction, as they enable more 

comprehensive optimization. For example, integrated EMS 

models can simultaneously account for fuel costs, 

greenhouse gas emissions, and technical performance 

indicators, thereby delivering solutions that align with 

broader policy and sustainability frameworks [19, 20]. Such 

combined strategies are particularly relevant for community 

microgrids and institutional setups, where social and 

environmental considerations are as important as financial 

performance. 

Despite significant advancements, microgrid EMS design 

still faces considerable challenges. The intermittency of 

renewable resources remains a critical issue, as inaccurate 

forecasts can lead to imbalances in supply and demand, 

necessitating corrective measures in real time [21]. The high 

computational complexity of optimization models also 

limits their scalability, particularly for larger microgrids with 

diverse energy resources [22]. Furthermore, energy storage 

systems introduce additional challenges, including 

degradation costs, limited capacities, and high replacement 

costs [8, 9]. 
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Another pressing issue concerns standardization and 

interoperability. Current EMS solutions often lack 

standardized frameworks for integration across different 

platforms and technologies, which hampers scalability and 

wider adoption [18]. This is particularly problematic in 

multimicrogrid environments where multiple systems must 

interact seamlessly to ensure stability and efficiency [6]. 

In addition to technical challenges, behavioral and 

managerial factors play an increasingly important role. 

Studies have shown that pro-environmental behaviors, 

energy-saving habits, and green human resource 

management policies significantly influence the 

effectiveness of EMS implementations, particularly in 

institutional and organizational contexts [3, 12]. 

Incorporating these human-centered factors into EMS 

frameworks represents an important frontier for future 

research. 

Addressing these challenges requires the development of 

adaptive, intelligent, and multi-layered EMS frameworks 

that can balance short-term responsiveness with long-term 

optimization. The proposed two-layer EMS structure 

embodies this approach by integrating MILP-based 

optimization in the upper layer for medium-term economic 

scheduling and nonlinear optimization in the lower layer for 

real-time adaptability. Such systems are supported by 

advanced forecasting models, comprehensive BESS 

modeling, and metaheuristic optimization techniques to 

ensure resilience and cost-effectiveness [10, 16]. 

Adaptive two-layer EMS frameworks also align with 

broader trends in sustainable energy system management. 

For instance, studies in resource management and 

sustainability emphasize the importance of balancing profit 

with long-term environmental responsibility, a principle 

directly applicable to microgrid operations [4, 13]. 

Similarly, research in public energy management and 

sectoral intellectualization highlights the role of smart 

systems and digitalization in optimizing resource utilization 

and enhancing governance structures [23]. These 

perspectives underscore the necessity of embedding 

adaptive EMS frameworks within a broader context of 

sustainability, governance, and behavioral alignment. 

This study contributes to the evolving body of literature 

by proposing and evaluating an adaptive two-layer EMS 

framework for microgrids. The novelty lies in the 

combination of MILP-based medium-term optimization 

with PSO-based nonlinear real-time management, supported 

by deep learning forecasting techniques and precise BESS 

modeling. By integrating technical, economic, and 

environmental considerations, the proposed framework 

seeks to enhance adaptability to uncertainties, reduce 

operational costs, and improve sustainability outcomes. In 

doing so, it addresses key gaps identified in the literature, 

including the need for adaptive solutions to renewable 

variability, the incorporation of realistic storage models, and 

the alignment of EMS with sustainability imperatives. 

2. Methodology 

This study aims to address these gaps by proposing an 

advanced, adaptive two-layer EMS. In this system, the first 

layer operates based on a mixed-integer linear programming 

(MILP) approach using a rolling horizon, focusing on 

profitability. The second layer manages short-term 

variations and real conditions of the microgrid (MG) through 

precise nonlinear optimization. Furthermore, the battery 

storage model in this system is developed by considering 

converter efficiency, aging processes, and stored energy, and 

is evaluated through accurate simulation of an experimental 

MG. 

Two-Layer Structure of the Proposed System 

The resilience and adaptability of the energy management 

system to changes caused by uncertain input parameter 

forecasts are achieved through an optimization framework 

based on a rolling horizon strategy with corrective action, 

which falls under the category of online optimization. In this 

framework, optimization is performed at each time step or 

whenever new forecasts are available, and the connection 

between layers is enabled through common variables, 

facilitating corrective action. (Figure 1) illustrates the 

principles of operation of this approach in three consecutive 

iterations, in which three key concepts are defined: 

Prediction Horizon (PH), Scheduling Horizon (SH), and 

Control Horizon (CH). In each iteration, the system's initial 

state (IS) is defined, and using forecasts for the PH period, 

optimization is performed for the SH period, after which the 

resulting decisions are applied in the CH period [22]s. 
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Figure 1. Moving horizon strategy with corrective action 

 

In the rolling horizon optimization framework, the 

optimization decisions generated in each iteration are 

applied only to the current control horizon (CH), and by 

shifting the time step, the final state variables are transferred 

as inputs to the next iteration to define the system's new state 

along with the updated forecasts. This iterative process, 

through the transfer of state variables and continuous 

updates of forecasts, enables corrective action and 

adaptability to changes in uncertain parameters. Energy 

management is implemented in the form of a two-layer 

system, where the upper layer optimizes operations within 

the scheduling horizon (SH) based on medium-term 

forecasts, and its output is sent as a reference input to the 

lower layer. The lower layer then optimizes operations only 

within the shorter scheduling horizon (CH) using the 

updated short-term forecasts, and at the end, the state 

variables are returned to the upper layer for use in the next 

iteration. 
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Figure 2. Block diagram of a two-layer adaptive microgrid EMS 

 

In the lower layer of the microgrid energy management 

system (EMS), the optimization problem is solved 

nonlinearly in a simultaneous simulation environment, 

combining a metaheuristic optimization algorithm 

(specifically, Particle Swarm Optimization (PSO)) with 

power network analysis simulation tools. These methods 

allow for the solution of complex and nonlinear problems 

without the need for detailed knowledge of the objective 

function and constraints. The simulation tool, incorporating 

precise models of power system components and power flow 

equations, creates a non-approximated model of the 

microgrid, which leads to the nonlinearity of the 

optimization problem. Although metaheuristic methods are 

time-consuming, their use in the lower layer's short-term 

planning horizon reduces computational costs and aligns 

with the upper layer's control horizon (CH). In this 

simulation environment, the information exchange loop 

between the simulation tool and the optimization algorithm 

is continuous, requiring effective interfaces between these 

two components for proper operation. 

Multilayer Optimization Strategy 

In the upper layer of the energy management system, the 

optimization problem is solved using mathematical 

programming methods, which numerically minimize or 

maximize the objective function while considering the 

system's constraints. The objective function depends on 

variables that are defined within a permissible range, 

forming a set of possible solutions. These constraints include 

performance constraints and variable boundaries. The 

optimization problem's variables are divided into several 

categories: decision variables (inputs), state variables 

(indicating the system's status and linking inputs to outputs), 

output variables (optimization results), and operational 

variables (representing valid environmental conditions for 

the solution). The general structure of the optimization 

problem is expressed in the form of equation (1), where xxx 

represents the variable vector, ff(x) is the objective function, 

and c(x) is the constraint vector, with sets E and III 

representing the corresponding indices. 

 

(1) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 

with restrictions: {
𝑐𝑖  (𝑥) = 0.  𝑖 ∈ 𝐸

𝑐𝑖  (𝑥) >= 0.  𝑖 ∈ 𝐼
  . 𝑥 ∈

𝑅𝑛 

x: The set of variables that can be adjusted in the 

optimization process. 

f(x): The objective function that needs to be minimized or 

maximized. 

c(x): The set of constraints that limit the possible 

solutions to feasible ones. 

 

E and I: Sets that indicate which constraints are equalities 

and which are inequalities. 
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Mathematical Modeling and Algorithms (MISOCP) 

In the upper layer of the microgrid energy management 

system, the optimization problem is modeled as a Mixed-

Integer Second-Order Cone Programming (MISOCP) 

problem with binary variables. This model features an 

objective function and linear constraints, and due to the 

binary nature of some variables (e.g., equipment being 

on/off), it allows logical decision-making for controllable 

elements of the microgrid. To solve such problems, the 

Branch and Bound algorithm is used, which divides the main 

problem into simpler subproblems and applies branching, 

bounding, and evaluation steps in search of the optimal 

solution. The MILP model in this study is implemented 

using an open-source algebraic modeling language based on 

Python and is connected to a numerical solver through an 

internal interface. This modeling language allows the 

optimization problem to be defined in a manner similar to 

the original mathematical form, facilitating the readability 

and development of the model. 

(2) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 

with restrictions: { 
𝐴𝑥 = 𝑏
𝑥 ≥ 0

𝑥𝑖 ∈ 𝑍 . ∀𝑖 ∈ 𝐼
;   

x: Decision variable vector, including continuous and 

integer (binary) variables representing controllable elements 

of the microgrid. 

c: Coefficient vector for the objective function, 

representing costs or weights associated with decision 

variables. 

A: Constraint matrix, representing the linear relationships 

between variables in the system. 

b: Right-hand side vector, representing constants in the 

equality constraints. 

𝑥𝑖 ∈ 𝑍   in ∀𝑖 ∈ 𝐼   ∈I: Integer constraints on specific 

variables indexed by set I, representing binary or integer 

decision variables. 

𝑥 ≥ 0: Non-negativity constraints on variables. 

 

If integer variables can take only binary values (0 or 1), it 

is necessary to add to expression (2) an additional restriction 

shown below: 

(3) 0 ≤ 𝑥𝑖 ≤ 1 

 

Modeling of Microgrid System Components 

Battery Energy Storage System Model 

The Battery Energy Storage System (BESS) is a key 

component in microgrids, enabling bidirectional energy 

flow. In the charging state, it acts as a consumer, and in the 

discharging state, it functions as a source. The BESS consists 

of a rechargeable battery and a bidirectional power 

electronic converter, which is responsible for controlling the 

energy flow between the DC and AC sides. The block 

diagram of this system is shown in Figure 3. 

 

 

Figure 3. Block diagram of the BESS model 

Bidirectional Power Converter and its Efficiency 

Model 

The power electronic converter in the BESS is capable of 

transferring energy in both directions, from DC to AC and 

vice versa. The maximum power that can be exchanged on 

the AC side is controlled by the rated power of the converter 

and the binary status variable of the system. The following 

equations define the charging and discharging power limits: 

 

(4) 

𝑃𝑡,𝑏𝑒𝑠𝑠
𝑐ℎ  𝑎𝑐 ≤ 𝑃𝑏𝑒𝑠𝑠

𝑛𝑜𝑚. 𝑠𝑡,𝑏𝑒𝑠𝑠
𝐵𝐸𝑆𝑆              ∀𝑡 ∈ 𝑇, ∀𝑏𝑒𝑠𝑠 

∈ 𝐵𝐸𝑆𝑆 

(5) 
𝑃𝑡,𝑏𝑒𝑠𝑠

𝑑𝑖𝑠𝑐ℎ  𝑎𝑐 ≤ 𝑃𝑏𝑒𝑠𝑠
𝑛𝑜𝑚 . (1 − 𝑠𝑡,𝑏𝑒𝑠𝑠

𝐵𝐸𝑆𝑆  𝑠𝑡𝑎𝑡𝑢𝑠)             ∀𝑡

∈ 𝑇, ∀𝑏𝑒𝑠𝑠 ∈ 𝐵𝐸𝑆𝑆 

In which: 

𝑃𝑡,𝑏𝑒𝑠𝑠
𝑐ℎ  𝑎𝑐: charging power of the bess on the AC side in time 

step t, 
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𝑃𝑡,𝑏𝑒𝑠𝑠
𝑑𝑖𝑠𝑐ℎ  𝑎𝑐: discharge power of the bess on the AC side in 

time step t, 

𝑃𝑏𝑒𝑠𝑠
𝑛𝑜𝑚:  AC power of the bidirectional power electronics 

converter of the bess  

𝑠𝑡,𝑏𝑒𝑠𝑠
𝐵𝐸𝑆𝑆  𝑠𝑡𝑎𝑡𝑢𝑠: binary variable of state of bess in the time 

step t , defines operation mode (charging or dischargin 

If models with efficiencies less than 100% are used, the 

model can be simplified without the use of binary variables. 

The efficiency of the converter is a non-linear and 

unstable function of its instantaneous load. As shown in 

Figure 4, efficiency decreases at low loads and typically 

reaches its maximum value at around 15% of the rated 

power. Since the efficiency function is non-linear, piecewise 

linear approximation is used to incorporate it into linear 

optimization models. The equation for this approximation is 

given in Equation 6, and its graph is shown in Figure 5 [24]. 

 

(6) 

𝐿(𝑓(𝑥)) = ∑ 𝑓(𝑎𝑘). 𝑡𝑘

𝑚

𝑘=1

     

𝑥 = ∑(𝑎𝑘). 𝑡𝑘

𝑚

𝑘=1

 ;  𝑡0 ≤ 𝑦0,     𝑡𝑘

≤ 𝑦𝑘−1 + 𝑦𝑘;         𝑤𝑖𝑡ℎ:   𝑘

= 1,2,000, 𝑚 − 1, 𝑡𝑚

≤ 𝑦𝑚 − 1 

∑ 𝑦𝑘 = 1

𝑚−1

𝑘=0

 ;  ∑ 𝑡𝑘 = 1

𝑚

𝑘=0

        𝑤ℎ𝑒𝑟𝑒:       𝑦𝑘

∈ {0,1}, 𝑡𝑘 ≥ 0, 𝑘

= 0,1, … , 𝑚 − 1 

Where: 

f(x) : a nonlinear function of the variable x that is 

linearized, 

ak : breaking point k, 

yk : binary variable of breaking point k. 

 

Figure 4. Efficiency of the bidirectional power electronics converter depending on the load 

 

 

Figure 5. Linear approximation of 2way power converter efficiency depending on load by several sections 
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Using this linearized efficiency, the actual power at the 

battery side and the AC side is calculated as follows: 

 

 

(7) 

𝑃𝑡,𝑏𝑒𝑠𝑠
𝑐ℎ   𝑏𝑎𝑡𝑡 = 𝑃𝑡,𝑏𝑒𝑠𝑠

𝑐ℎ 𝑎𝑐 . 𝜂𝑏𝑒𝑠𝑠
𝑃𝐶𝑈 (𝑃𝑡,𝑏𝑒𝑠𝑠

𝑐ℎ   𝑎𝑐)   ∀𝑡

∈ 𝑇, ∀𝑏𝑒𝑠𝑠 ∈ 𝐵𝐸𝑆𝑆 

(8) 
𝑃𝑡,𝑏𝑒𝑠𝑠

 𝑑𝑖𝑠𝑐ℎ 𝑎𝑐 = 𝑃𝑡,𝑏𝑒𝑠𝑠
𝑑𝑖𝑠𝑐ℎ 𝑏𝑎𝑡𝑡 . 𝜂𝑏𝑒𝑠𝑠

𝑃𝐶𝑈 (𝑃𝑡,𝑏𝑒𝑠𝑠
𝑑𝑖𝑠𝑐ℎ  𝑏𝑎𝑡𝑡)   ∀𝑡

∈ 𝑇, ∀𝑏𝑒𝑠𝑠 ∈ 𝐵𝐸𝑆𝑆 

In which:  

𝑃𝑡,𝑏𝑒𝑠𝑠
𝑐ℎ   𝑏𝑎𝑡𝑡: Battery charging power bess on the DC side in 

time step t, 

𝑃𝑡,𝑏𝑒𝑠𝑠
 𝑑𝑖𝑠𝑐ℎ 𝑎𝑐: Battery discharge power bess on the DC side in 

time step t, 

𝜂𝑏𝑒𝑠𝑠
𝑃𝐶𝑈 : Energy conversion efficiency of the two-way 

power converter of the bess [24]. 

 

In this model, instead of using the state of charge (SOC) 

expressed in ampere-hours, the concept of state of energy 

(SOE) in watt-hours (Wh) is used. The energy model 

describes the battery's charge/discharge behavior, 

considering efficiency and power limitations as follows: 

o  

(9) 

𝑆𝑂𝐸𝑡 = ∑ 𝑆𝑂𝐸𝑡,𝑗

𝐽−1

𝑗=1

 

𝑆𝑂𝐸𝑡,𝑗 ≤ 𝑅𝑗+1 − 𝑅𝑗 

∆𝑆𝑂𝐸𝑡 = 𝐹1 + ∑
𝐹𝑗+1 − 𝐹𝑗

𝑅𝑗+1 − 𝑅𝑗

𝐽−1

𝑗=1

. 𝑆𝑂𝐸𝑡−1,𝑗 

𝑃𝑡
𝑐ℎ   𝑏𝑎𝑡𝑡 ≤

∆𝑆𝑂𝐸𝑡

∆𝑡. 𝜂𝐸
 

 
Where: 

𝑆𝑂𝐸𝑡: state of charge of the battery in time step t 

𝐽 : the number of segments of the linearized characteristic, 

𝑆𝑂𝐸𝑡,𝑗: state of charge of segment j in time step t, 

∆SOE: energy that the battery can absorb during the 

charging process 

𝑅 : breaking point on the SOE axis 

𝐹 : turning point on the ∆SOE axis 

𝜂𝐸: energy efficiency of the battery 

In this model, the minimum and maximum SOE 

constraints are considered to prevent battery degradation. 

Additionally, the initial SOE value at each time horizon is 

extracted from the results obtained in the previous step and 

is used in the form of Model Predictive Control (MPC). 

 

PV System and Generator 

The PV system model includes the PV field and the 

converter, and its output is a function of solar radiation and 

cell temperature [22]. The DC output power of the PV field, 

according to IEC 6124-2 standard and equation (10), is 

expressed as follows: 

 

 

 

(10) 

𝑃𝑡.𝑝𝑣
𝐷𝐶 = 𝑃𝑝𝑣

𝑎𝑟𝑟𝑎𝑦 𝑆𝑇𝐶
.

𝐺𝑡

𝐺𝑆𝑇𝐶
. (1

−
𝛾𝑝𝑣

100
. (𝜗𝑡.𝑝𝑣

𝑚𝑜𝑑

− 𝜗𝑆𝑇𝐶))         ∀𝑡 ∈ 𝑇, ∀𝑝𝑣 

∈ 𝑃𝑉 

(11) 

𝜗𝑡.𝑝𝑣
𝑚𝑜𝑑

= 𝜗𝑡
𝑎𝑚𝑏 +

𝑁𝑂𝐶𝑇𝑝𝑣 − 20

800
 . 𝐺𝑡                       ∀𝑡

∈ 𝑇, ∀𝑝𝑣 ∈ 𝑃𝑉 

𝑃𝑡.𝑝𝑣
𝐷𝐶 output DC power of the PV field of the PV system 

pv in the time step t, 

𝑃𝑝𝑣
𝑎𝑟𝑟𝑎𝑦 𝑆𝑇𝐶

power of the PV field under standard test 

conditions, 

𝐺𝑡  power of solar radiation in time step t, 

𝐺𝑆𝑇𝐶  solar radiation power under standard test 

conditions, which is 1 kW/m2, 

𝛾𝑝𝑣 temperature coefficient of power of the PV 

modules 

𝜗𝑡.𝑝𝑣
𝑚𝑜𝑑  the temperature of the cells of the PV system pv 

in the time step t, 

𝜗𝑆𝑇𝐶  the temperature of the cell under standard test 

conditions is 25 ◦C 

𝜗𝑡
𝑎𝑚𝑏 ambient temperature in time step t, 

𝑁𝑂𝐶𝑇𝑝𝑣 nominal working temperature of the cell of 

the PV system pv 

 

 

The output AC power is also modeled as follows, taking 

into account the converter efficiency: 

 

 

(12) 
𝑃𝑡.𝑝𝑣

𝐴𝐶 = 𝑃𝑡.𝑝𝑣
𝐷𝐶 . 𝜂𝑝𝑣

𝑖𝑛𝑣(𝑃𝑡,𝑝𝑣
𝐷𝐶 )       ∀𝑡 ∈ 𝑇, ∀𝑝𝑣   

(13) 𝑃𝑡.𝑝𝑣
𝐴𝐶 ≤ 𝑃𝑝𝑣

𝑖𝑛𝑣 𝑛𝑜𝑚        ∀𝑡 ∈ 𝑇, ∀𝑝𝑣  

In which: 

 𝑃𝑡.𝑝𝑣
𝐴𝐶  output alternating current (AC) power of the 

PV system pv in time step t, 
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𝜂𝑝𝑣
𝑖𝑛𝑣   the efficiency of the inverter of the 

photovoltaic system pv, 

𝑃𝑝𝑣
𝑖𝑛𝑣 𝑛𝑜𝑚   nominal alternating power of the inverter 

of the PV system pv 

The nonlinear efficiency of the converter is modeled 

using a piecewise linearization technique similar to the 

BESS section. 

The controllable generators play a crucial role in ensuring 

reliability in the isolated operation of a microgrid and are 

modeled according to conventional Unit Commitment (UC) 

and Economic Dispatch (ED) models. The output power of 

each generator is constrained within permissible limits [20]: 

 

(14) 

𝑃𝑑𝑔
𝐷𝐶 𝑚𝑖𝑛 . 𝑢𝑡,𝑑𝑔

𝐷𝐺 𝑠𝑡𝑎𝑡𝑒 ≤ 𝑃𝑡,𝑑𝑔
𝐷𝐺 

≤ 𝑃𝑑𝑔
𝐷𝐶 𝑚𝑎𝑥 . 𝑢𝑡,𝑑𝑔

𝐷𝐺 𝑠𝑡𝑎𝑡𝑒          ∀𝑡

∈ 𝑇, ∀𝑑𝑔 ∈ 𝐷𝐺 

In which: 

𝑃𝑑𝑔
𝐷𝐶 𝑚𝑖𝑛 minimum output power of the controllable 

generator dg, 

𝑃𝑑𝑔
𝐷𝐶 𝑚𝑎𝑥  maximum output power of the controllable 

generator dg 

𝑃𝑡,𝑑𝑔
𝐷𝐺  the output power of the controllable generator dg in 

the time step t, 

𝑢𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑡𝑒  Binary variable of engagement of controllable 

generator dg in time step t. 

The constraints on the rate of change of generation, both 

upward and downward, are also applied as follows [23]: 

 

 

(15) 

𝑃𝑡,𝑑𝑔
𝐷𝐺 − 𝑃𝑡−1,𝑑𝑔

𝐷𝐺 ≤ 𝑃𝑑𝑔
𝐷𝐺 𝑅𝑈              ∀𝑡 ∈ 𝑇, ∀𝑑𝑔 

∈ 𝐷𝐺 

(16) 
𝑃𝑡−1,𝑑𝑔

𝐷𝐺 − 𝑃𝑡,𝑑𝑔
𝐷𝐺 ≤ 𝑃𝑑𝑔

𝐷𝐺 𝑅𝐷              ∀𝑡 ∈ 𝑇, ∀𝑑𝑔 

∈ 𝐷𝐺 

In which: 

 𝑃𝑑𝑔
𝐷𝐺 𝑅𝑈 ∶maximum change in output power during 

upward regulation, 

𝑃𝑑𝑔
𝐷𝐺 𝑅𝐷 ∶maximum change in output power during 

down regulation. 

 

The model also includes constraints on the minimum 

on/off time of the generator, which are modeled using binary 

variables s t,dg
DG start s t,dg

DG stop p [25]: 

(17) ∑ 𝑢𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑡𝑒 ≥

𝑡+𝑇𝑑𝑔
𝐷𝐺 𝑜𝑛−1

𝑡

𝑇𝑑𝑔
𝐷𝐺 𝑜𝑛 . 𝑠𝑡,𝑑𝑔

𝐷𝐺 𝑠𝑡𝑎𝑟𝑡         ∀𝑡

∈ 𝑇, ∀𝑑𝑔 ∈ 𝐷𝐺 

(18) 

∑ (1 − 𝑢𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑡𝑒)

𝑡+𝑇𝑑𝑔
𝐷𝐺 𝑜𝑓𝑓

−1

𝑡

≥ 𝑇𝑑𝑔
𝐷𝐺 𝑜𝑓𝑓 

. 𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑜𝑝 

        ∀𝑡

∈ 𝑇, ∀𝑑𝑔 ∈ 𝐷𝐺 

(19) 

𝑢𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑡𝑒 − 𝑢𝑡−1,𝑑𝑔

𝐷𝐺 𝑠𝑡𝑎𝑡𝑒

= 𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑟𝑡 

− 𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑜𝑝 

         ∀𝑡 ∈ 𝑇, ∀𝑑𝑔 

∈ 𝐷𝐺 

(20) 
𝑠𝑡,𝑑𝑔

𝐷𝐺 𝑠𝑡𝑎𝑟𝑡 + 𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑜𝑝 

≤ 1        ∀𝑡 ∈ 𝑇, ∀𝑑𝑔 

∈ 𝐷𝐺   

In which: 

 𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑟𝑡  the binary variable of starting the 

controllable generator dg in the time step t, 

 

𝑠𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑜𝑝 

 the binary stop variable of the controllable 

generator dg at time step t 

 

𝑇𝑑𝑔
𝐷𝐺 𝑜𝑛  the minimum production time of the 

controllable generator t expressed in the number of 

time steps of the optimization problem, 

 

𝑇𝑑𝑔
𝐷𝐺 𝑜𝑓𝑓 

 minimum production stop time of the 

controllable generator t expressed in the number of 

time steps of the optimization problem. 

 

The total operating cost includes fuel cost and startup cost 

[17]: 

 

(21) 
𝑐𝑡,𝑑𝑔

𝐷𝐺 𝑐𝑜𝑠𝑡 = 𝑐𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 

+ 𝑐𝑡,𝑑𝑔
𝐷𝐺 𝑓𝑢𝑒𝑙 

       ∀𝑡

∈ 𝑇, ∀𝑑𝑔 ∈ 𝐷𝐺 

In which: 

𝑐𝑡,𝑑𝑔
𝐷𝐺 𝑐𝑜𝑠𝑡 : the total cost of operation of the generator dg in 

the time step t, 

𝑐𝑡,𝑑𝑔
𝐷𝐺 𝑠𝑡𝑎𝑟𝑡𝑢𝑝 

: the cost of starting the controllable generator 

dg in the time step t, 

𝑐𝑡,𝑑𝑔
𝐷𝐺 𝑓𝑢𝑒𝑙 

:fuel cost of controllable generator dg in time 

step t. 
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The fuel cost is modeled with a quadratic function and is 

linearized in a piecewise form to be included in the MILP 

model [25, 26]. 

 

 

(22) 

𝑐𝐷𝐺  𝑓𝑢𝑒𝑙(𝑃) = 𝑎. 𝑃2 + 𝑏. 𝑃 

𝑐𝐷𝐺  𝑓𝑢𝑒𝑙(𝑃) = ∑ 𝑐𝑘. 𝜆𝑘

𝐾

𝑘=1

 

(23) 

𝑃 = ∑ ∆𝑘. 𝜆𝑘

𝐾

𝑘=1

 

∑ 𝜆𝑘

𝐾

𝑘=1

= 𝑢𝐷𝐺  𝑠𝑡𝑎𝑡𝑒  (𝜆𝑘 ≥ 0, 𝑘 = 1, … , 𝐾) 

 

In which: 

 𝑐𝐷𝐺  𝑓𝑢𝑒𝑙the fuel cost of the controllable generator, 

𝑎. 𝑏 coefficients of the quadratic fuel cost function, 

𝑐𝑘  breaking point k on the cDG fuel axis 

𝜆𝑘  segment k output power of the controllable 

generator, 

∆𝑘 turning point k on the P axis 

3. Findings and Results 

In this study, Artificial Neural Networks (ANN) with 

Long Short-Term Memory (LSTM) are used for short-term 

and medium-term prediction of input parameters in the EMS 

system. These networks are implemented in Python, and 

their characteristics in relation to the type of EMS layer and 

relevant temporal features are presented in Table 1. 

Table 1. Characteristics of ANNs with LSTM used to predict input parameters in optimization problems of EMS layers 

Layer Prediction horizon Time step Size 

Higher layer 24 hour 10 min Power consumption of (unmanageable) electrical 

energy of  

Lower layer 10 min 1 min Power consumption of (unmanageable) electrical 

energy of MG 

10 min 1 min The power of solar radiation 

10 min 1 min Ambient temperature 

 

Training Features: • The data used includes electrical and 

meteorological measurements, extracted from an online 

database covering the period from March 6, 2020, to May 8, 

2022. • The data related to electricity consumption is shown 

in Figure 6, and the meteorological parameters (solar 

radiation, temperature, humidity, wind, air pressure) are 

shown in Figure 7. 

 

Figure 6. Measured uncontrollable consumption power profile of the test MG 
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Figure 7. Input meteorological parameters to the ANN 

 

• The data is specified with different forecasting horizons 

(10-minute and 24-hour) and time intervals (1 minute and 10 

minutes) in Table 1. 

Additional Input Data: To improve the prediction 

accuracy, the following non-physical variables were also 

used as inputs to the network: • Current time of day, day of 

the year, week number, day of the week (numerical values) 
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• Binary indicators for holidays and weekends These 

features are detailed in the text and standardized using 

numerical values. 

Data Preparation: • All inputs are normalized to the range 

[0, 1] according to equation 24 to reduce the impact of unit 

differences. 

(24) 𝑦𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

• The output of the networks is the forecast profile from 

time t to t+n, which is generated based on past data from t-

m to t-1. The values of m and n vary depending on the EMS 

layer (as shown in Table 1). 

• The overall structure of the neural network and its input 

and output vectors are shown in Figure 8. 

 

Figure 8. Schematic representation of ANN with long short-term memory used to predict input parameters in optimization problems of EMS 

layers for the reference cases: Simulation and Performance Evaluation of the System; Short-term Planning Results Analysis 
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Table 2. Comparison of the results of the planning for the four sub-components of the EMS objective function analysis 

Index / Subcase Subcase 1 Subcase 2 Subcase 3 (Reference) Subcase 4 

Objective Function Value 

[USD] 

-25.168 -5.116 -33.418 -51.346 

Net Operational 

Revenue/Cost [USD] 

-25.168 -6.418 22.987 -13.507 

Additional/Virtual Costs 

[USD] 

0 1.302 -10.431 -37.839 

Electricity Purchase Cost 

[USD] 

31.404 14.87 31.472 19.237 

Revenue from Selling 

Electricity to the Grid 
[USD] 

6.235 8.454 8.484 7.153 

BESS Cyclic Aging Cost 

[USD] 

0 0 1.096 14.049 

BESS Calendar Aging Cost 

[USD] 

0 0 20.37 18.808 

Value of Stored Energy in 

BESS [USD] 

0 1.302 11.035 5.568 

Static Load Shedding Cost 

[USD] 

0 0 0 10.552 

 

The analysis of the four subcases reveals that the 

performance of the Battery Energy Storage System (BESS) 

has the greatest impact on optimizing the short-term 

scheduling of the microgrid. In the second case, eliminating 

the battery degradation costs leads to increased utilization of 

the BESS and a reduction in operational costs, resulting in 

the best objective function value (least loss). In contrast, in 

the third case (reference), where degradation costs are 

included in the objective function, the battery is used less, 

and the objective function value worsens. The fourth case, 

which also includes islanding conditions, incurs the highest 

cost due to power supply limitations and the activation of 

demand response mechanisms. Additionally, the difference 

between the first and second cases highlights the importance 

of including the stored energy value in the objective 

function, particularly to avoid unnecessary charging and 

prevent additional costs at the end of the planning horizon. 

Impact of the Optimization Framework on the Short-

Term Scheduling of the Experimental MG Operations 

In this section, the impact of the two-layer EMS 

optimization framework on the short-term scheduling of the 

experimental microgrid operations is analyzed. The EMS 

specifically consists of two interconnected layers, each with 

distinct characteristics and managed separately using 

predicted input parameters. These parameters include solar 

irradiance, ambient temperature, and microgrid power 

consumption, which are obtained through artificial neural 

network predictions and the GFS (Global Forecast System) 

service. 

The simulation results show that the largest error in 

forecasting and its impact on scheduling, particularly in solar 

irradiance prediction, is evident, as the photovoltaic system 

is highly dependent on this parameter. This error leads to 

either a shortage or surplus of electricity in the microgrid, 

requiring further adjustments in the short-term scheduling of 

operations. On the other hand, predictions related to ambient 

temperature and microgrid power consumption are generally 

more accurate and have a lesser impact on the short-term 

scheduling adjustments. 

For a more precise evaluation of the impact of the 

optimization framework, three different subcases have been 

analyzed: the reference case (subcase 3.1), which includes a 

two-layer EMS with a rolling horizon strategy (online 

optimization) and input forecasting for both layers; subcase 

3.2, which uses only the upper layer of the EMS; and subcase 

3.3, which uses only the upper layer without the rolling 

horizon strategy for offline optimization. 

The results indicate that using the dual-layer optimization 

framework (reference case 3.1) provides the best level of 

adaptability to changes in input forecasts and results in the 

most optimized outcomes in the electrical energy exchange 

profiles and BESS (Battery Energy Storage System) 

performance. In comparison, in subcase 3.2, where only the 

upper layer is used, input forecasts for the lower layer are 

unavailable, causing greater deviations in energy exchange 

profiles and battery charge status. Finally, subcase 3.3, 

which lacks any online optimization strategy, leads to the 

worst outcome in terms of adapting to forecast changes, with 

more significant deviations in the profiles, especially 

compared to the reference case. 

Overall, the use of the adaptive optimization framework 

with separate EMS layers has a significant impact on 
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optimizing the short-term scheduling of the experimental 

microgrid operations. By using a rolling horizon strategy and 

updated forecasts, fluctuations due to incorrect predictions 

can be minimized, reducing the negative impacts on 

microgrid scheduling. 

Sensitivity Analysis of the Objective Function to 

Parameter Changes 

The sensitivity analysis of the objective function in the 

optimization of microgrid EMS shows that the installed 

capacity of the photovoltaic (PV) system and battery (BESS) 

costs have the greatest impact on the financial performance 

of the microgrid. Increasing the PV capacity leads to a 

reduction in costs and an increase in revenue, while changes 

in battery replacement costs and battery lifespan 

significantly affect operational costs. Additionally, the cost 

of electricity consumption has a greater impact on the 

objective function compared to the value of electricity 

delivered to the supplier. Other settings, such as the rated 

power of the power converter and the involved load, have a 

lesser effect. Therefore, optimizing these parameters can 

help reduce costs and increase the microgrid's profit. 

4. Discussion and Conclusion 

The findings of this study highlight the significant 

advantages of adopting an adaptive two-layer energy 

management system (EMS) for microgrids, particularly in 

addressing the complexities introduced by renewable energy 

integration and system uncertainties. The results 

demonstrated that the proposed framework, which combines 

medium-term mixed-integer linear programming (MILP) 

optimization with short-term nonlinear optimization guided 

by metaheuristic algorithms, not only improved system 

adaptability but also enhanced financial performance, 

reduced operational costs, and optimized the utilization of 

the battery energy storage system (BESS). Importantly, the 

inclusion of degradation costs and converter efficiencies in 

the BESS model provided realistic insights into its long-term 

sustainability and operational trade-offs. These outcomes 

reinforce the importance of considering both economic and 

technical objectives in EMS design, moving beyond 

simplistic models toward adaptive, multilayered strategies. 

One of the central results of this study was the 

demonstration that two-layer optimization significantly 

improved system resilience to forecasting errors, particularly 

with respect to solar irradiance prediction. The adaptive 

structure allowed real-time adjustments in scheduling to 

mitigate the negative effects of inaccuracies in renewable 

energy forecasts, which are well-documented challenges in 

the literature [5, 21]. By updating forecasts and shifting 

decision variables dynamically, the system reduced the 

extent of deviations in load balance and energy trading, 

thereby maintaining both stability and profitability. These 

results align with earlier studies emphasizing the importance 

of rolling horizon optimization and online correction 

mechanisms [10, 22]. Together, this body of work 

underscores the need for predictive and adaptive frameworks 

that can operate effectively under uncertainty, positioning 

two-layer EMS designs as a benchmark for future microgrid 

operations. 

The role of BESS was particularly evident in the 

performance outcomes of the system. The results showed 

that when battery degradation costs were excluded, 

utilization increased, leading to lower short-term costs, but 

at the expense of long-term sustainability. Conversely, when 

degradation was factored in, operational costs increased, but 

the system maintained a more sustainable utilization pattern. 

This trade-off is consistent with findings from prior research 

that emphasized the need for accurate modeling of storage 

degradation and converter efficiency to balance economic 

performance with system reliability [15, 16]. By integrating 

these factors into the optimization problem, this study 

contributed to bridging the gap between theoretical models 

and real-world microgrid applications, where battery 

replacement and maintenance costs constitute a major 

portion of lifecycle expenditures. 

Another key finding was the sensitivity of the objective 

function to photovoltaic (PV) system capacity and battery 

costs. Increasing PV penetration reduced costs and improved 

revenue, whereas higher battery replacement costs 

significantly undermined economic viability. These 

outcomes resonate with previous studies demonstrating that 

renewable integration, when combined with effective 

storage management, can lower operational costs and 

enhance sustainability [7, 19]. However, without adequate 

management of storage degradation, the financial 

advantages of renewables may be offset. Thus, the results 

highlight the critical importance of simultaneously 

optimizing generation and storage components, an approach 

already recommended in earlier models of hybrid PV–wind–

battery microgrids [11]. 

The proposed EMS also proved effective in balancing 

multi-objective goals. By integrating economic, technical, 

and environmental constraints, the system achieved cost 

savings while ensuring reliable operation and reducing 

greenhouse gas emissions. These results reflect broader 
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trends in microgrid research, where hybrid optimization 

frameworks are increasingly adopted to simultaneously 

account for environmental and financial objectives [3, 4]. In 

particular, the ability of microgrids to provide ancillary 

services such as voltage support and load management 

further enhances their contribution to grid stability, as 

highlighted in prior studies [20]. By demonstrating that two-

layer EMS structures can efficiently incorporate these 

multiple goals, this research strengthens the case for 

adopting multi-objective optimization as a standard in 

microgrid design. 

The integration of artificial intelligence for forecasting 

also played a crucial role in the system’s performance. The 

study employed deep learning techniques, including 

artificial neural networks (ANN) and long short-term 

memory (LSTM), which provided accurate predictions of 

load demand and meteorological parameters. These 

forecasts proved vital for minimizing scheduling errors and 

reducing reliance on costly corrective actions. Previous 

studies have confirmed the superiority of such models in 

capturing nonlinear patterns in energy data compared to 

traditional forecasting methods [12, 14]. Furthermore, the 

incorporation of behavioral and sustainability-oriented 

factors in energy management, such as pro-environmental 

behaviors and green management strategies, aligns with 

broader research that emphasizes the human and institutional 

dimensions of energy optimization [13, 23]. Thus, the 

combination of advanced predictive analytics and adaptive 

optimization represents a holistic approach that integrates 

both technological and social factors in energy management. 

A noteworthy implication of the findings is the alignment 

of the two-layer EMS framework with global energy 

sustainability initiatives. By ensuring cost efficiency, system 

resilience, and emissions reduction, this model contributes 

to the pursuit of the United Nations Sustainable 

Development Goals (SDGs) and broader decarbonization 

agendas. Similar conclusions have been drawn in prior work 

emphasizing that advanced EMS structures can serve as 

enablers of sustainable development by reducing 

dependency on fossil fuels and enhancing the resilience of 

local energy infrastructures [3, 5]. This makes adaptive EMS 

models particularly valuable for developing economies, 

where financial constraints and infrastructural 

vulnerabilities often hinder the effective adoption of 

renewable energy systems. 

When compared with existing literature, this study’s 

results reaffirm the value of hierarchical and two-layer EMS 

models, while also extending knowledge through more 

realistic modeling of storage degradation and converter 

efficiency. Prior work demonstrated that layered EMS 

approaches outperform centralized or single-layer structures 

in terms of adaptability and cost reduction [8, 9]. The present 

findings reinforce these conclusions and add empirical 

evidence from simulations that account for long-term battery 

sustainability, a feature often missing in earlier models. 

Similarly, while prior research highlighted the technical 

viability of two-layer systems, this study illustrates their 

practical alignment with environmental and financial 

objectives, positioning them as not only technically feasible 

but also economically and socially advantageous. 

Finally, the outcomes of this study illustrate the 

importance of integrating EMS frameworks into broader 

energy governance and policy structures. As emphasized in 

research on public sector energy management, the 

intellectualization and digitalization of energy systems are 

central to achieving efficient and transparent operations [23]. 

By demonstrating that adaptive two-layer EMS frameworks 

can simultaneously manage uncertainty, optimize costs, and 

support sustainability goals, this study provides evidence for 

policymakers to support the wider adoption of such systems 

in community, institutional, and industrial contexts. 

Despite the strengths of this study, several limitations 

must be acknowledged. First, the accuracy of the EMS is 

heavily dependent on forecasting models for renewable 

generation and demand. Although deep learning techniques 

improved prediction accuracy, errors in solar irradiance 

forecasts remained a significant challenge, as observed in the 

simulations. Second, the computational complexity of the 

proposed optimization models may limit scalability in larger 

systems with more diverse resources. Solving MILP and 

nonlinear optimization problems simultaneously requires 

considerable computational power, which could be a 

constraint in real-world applications. Third, while the BESS 

model incorporated degradation and efficiency factors, the 

analysis did not extend to a full lifecycle cost–benefit 

assessment, which could provide further insights into long-

term sustainability. Lastly, the study was conducted under 

simulated conditions, and experimental validation in real-

world microgrid environments remains necessary to confirm 

the practical applicability of the findings. 

Future research should focus on enhancing the 

forecasting accuracy of renewable energy sources by 

incorporating real-time meteorological data and hybrid 

predictive models that combine deep learning with physical 

models of solar radiation and temperature. Additionally, 

research could explore ways to reduce the computational 
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complexity of multi-layer EMS frameworks by employing 

decomposition algorithms or distributed optimization 

techniques, making them more scalable for larger networks. 

Investigating lifecycle cost analysis for storage systems, 

including recycling and second-life applications of batteries, 

could also provide more comprehensive insights into 

sustainability. Furthermore, expanding the scope of analysis 

to multimicrogrid environments and investigating 

interoperability challenges between multiple EMS 

frameworks would advance the development of large-scale, 

integrated energy systems. Finally, interdisciplinary 

research that combines technological, behavioral, and policy 

perspectives would be valuable for ensuring that EMS 

frameworks align not only with technical feasibility but also 

with institutional and societal priorities. 

Practitioners designing and operating microgrids should 

prioritize the adoption of adaptive, two-layer EMS 

frameworks that balance medium-term scheduling with 

short-term corrective actions. Implementing detailed models 

of storage systems, including degradation and efficiency, is 

crucial for realistic planning and long-term financial 

sustainability. Utilities and energy managers should also 

invest in advanced forecasting tools, particularly those based 

on artificial intelligence, to minimize errors and improve 

scheduling performance. Policymakers and regulators can 

support the deployment of such systems by creating 

standards for interoperability, incentivizing renewable–

storage integration, and encouraging the inclusion of 

environmental performance indicators in EMS objectives. In 

practice, adopting adaptive EMS frameworks can enable 

communities, institutions, and industries to achieve cost 

efficiency, energy security, and environmental responsibility 

simultaneously. 

Authors’ Contributions 

Authors equally contributed to this article. 

Acknowledgments 

Authors thank all participants who participate in this 

study. 

Declaration of Interest 

The authors report no conflict of interest. 

Funding 

According to the authors, this article has no financial 

support. 

Ethical Considerations 

All procedures performed in this study were under the 

ethical standards.  
 

References 

[1] N. Hatziargyriou, Microgrids: Architectures and Control. 

John Wiley & Sons, 2014. 

[2] Z. Shuai and et al., "Microgrid stability: Classification and a 

review," Renew. Sustain. Energy Rev., vol. 58, pp. 167-179, 

2016, doi: 10.1016/j.rser.2015.12.201. 

[3] U. M. H. Sahan, A. H. H. Jaaffar, and R. Osabohien, "Green 

human resource management, energy saving behavior and 

environmental performance: A systematic literature review," 

International Journal of Energy Sector Management, vol. 19, 

no. 1, pp. 220-237, 2025, doi: 10.1108/IJESM-01-2024-0013. 

[4] A. Ramos, "Sustainability assessment in waste management: 

An exploratory study of the social perspective in waste-to-

energy cases," Journal of Cleaner Production, vol. 143693, 

2024, doi: 10.1016/j.jclepro.2024.143693. 

[5] F. Yang, X. Feng, and Z. Li, "Advanced microgrid energy 

management system for future sustainable and resilient power 

grid," IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7251-7260, 

2019, doi: 10.1109/TIA.2019.2912133. 

[6] A. Singh, B. K. Sethi, A. Kumar, D. Singh, and R. K. Misra, 

"Three-Level Hierarchical Management of Active 

Distribution System With Multimicrogrid," IEEE Syst. J., 

2022, doi: 10.1109/JSYST.2022.3208032. 

[7] L. Zacharia and et al., "Optimal energy management and 

scheduling of a microgrid in grid- connected and islanded 

modes," 2019. 

[8] C. Ju, P. Wang, L. Goel, and Y. Xu, "A two-layer energy 

management system for microgrids with hybrid energy 

storage considering degradation costs," IEEE Trans. Smart 

Grid, vol. 9, no. 6, pp. 6047-6057, 2017, doi: 

10.1109/TSG.2017.2703126. 

[9] Z. Zhang, J. Wang, T. Ding, and X. Wang, "A two-layer model 

for microgrid real-time dispatch based on energy storage 

system charging/discharging hidden costs," IEEE Trans. 

Sustain. Energy, vol. 8, no. 1, pp. 33-42, 2016, doi: 

10.1109/TSTE.2016.2577040. 

[10] R. Aboli, M. Ramezani, and H. Falaghi, "Joint optimization of 

day-ahead and uncertain near real-time operation of 

microgrids," Int. J. Electr. Power & Energy Syst., vol. 107, pp. 

34-46, 2019, doi: 10.1016/j.ijepes.2018.10.032. 

[11] A. C. Luna, N. L. Diaz, M. Graells, J. C. Vasquez, and J. M. 

Guerrero, "Mixed-integer- linear-programming-based energy 

management system for hybrid PV-wind-battery microgrids: 

Modeling, design, and experimental verification," IEEE 

Trans. Power Electron., vol. 32, no. 4, pp. 2769-2783, 2016, 

doi: 10.1109/TPEL.2016.2581021. 

[12] M. Zidehsaraei, "Do Pro-Environmental Factors Lead to 

Customers’ Purchase Intention of Home Energy Management 

System? The Moderating Effects of Energy-Efficient Habits," 

Green and Low-Carbon Economy, 2024, doi: 

10.47852/bonviewglce42022907. 

[13] K. Parsakia, "Resource Management Strategies in the 

Hospitality Industry: Balancing Profit and Sustainability," 

Journal of Resource Management and Decision Engineering, 



 Management Strategies and Engineering Sciences: 2025; 7(6):1-17 

 

 17 

vol. 2, no. 4, pp. 17-23, 05/09 2024. [Online]. Available: 

https://journalrmde.com/index.php/jrmde/article/view/34. 

[14] J. John, A. P. Azodo, E. U. Bawa-Boyi, and F. C. T. Mezue, 

"Energy Auditing for University Energy Management: A Tool 

for Enhancing Sustainability," Advances in Science and 

Technology, vol. 160, pp. 227-244, 2025, doi: 10.4028/p-

x2str1. 

[15] M. Elkazaz, M. Sumner, and D. Thomas, "Real-time energy 

management for a small scale PV-battery microgrid: 

Modeling, design, and experimental verification," Energies, 

vol. 12, no. 14, p. 2712, 2019, doi: 10.3390/en12142712. 

[16] M. Elkazaz, M. Sumner, and D. Thomas, "Energy 

management system for hybrid PV- wind-battery microgrid 

using convex programming, model predictive and rolling 

horizon predictive control with experimental validation," Int. 

J. Electr. Power & Energy Syst., vol. 115, p. 105483, 2020, 

doi: 10.1016/j.ijepes.2019.105483. 

[17] H. Karimi, S. Jadid, and H. Saboori, "Multi-objective bi-level 

optimisation to design real-time pricing for demand response 

programs in retail markets," IET Gener. Transm. Distrib., vol. 

13, no. 8, pp. 1287-1296, 2019, doi: 10.1049/iet-

gtd.2018.6123. 

[18] W. Bower and T. Key, "Status of microgrid protection and 

related standards and codes: Protection supports integration," 

IEEE Power Energy Mag., vol. 19, no. 3, pp. 83-92, 2021, doi: 

10.1109/MPE.2021.3057975. 

[19] N. I. Nwulu and X. Xia, "Optimal dispatch for a microgrid 

incorporating renewables and demand response," Renew. 

energy, vol. 101, pp. 16-28, 2017, doi: 

10.1016/j.renene.2016.08.026. 

[20] A. Majzoobi and A. Khodaei, "Application of microgrids in 

providing ancillary services to the utility grid," Energy, vol. 

123, pp. 555-563, 2017, doi: 10.1016/j.energy.2017.01.113. 

[21] D. M. Lopez-Santiago, E. Caicedo Bravo, G. Jiménez-

Estévez, F. Valencia, P. Mendoza-Araya, and L. G. Marí-in, 

"A novel rule-based computational strategy for a fast and 

reliable energy management in isolated microgrids," Int. J. 

Energy Res., vol. 46, no. 4, pp. 4362-4379, 2022, doi: 

10.1002/er.7433. 

[22] G. M. Kopanos and E. N. Pistikopoulos, "Reactive scheduling 

by a multiparametric programming rolling horizon 

framework: a case of a network of combined heat and power 

units," Ind. & Eng. Chem. Res., vol. 53, no. 11, pp. 4366-4386, 

2014, doi: 10.1021/ie402393s. 

[23] D. Dzvinchuk, M. Kolisnyk, I. Ozminska, V. Petrenko, and H. 

Khamchuk, "On the Method and Tool of Intellectualization Of 

Public Management of Energy Supply Sector in Ukraine," On-

Line Journal Modelling the New Europe, no. 45, pp. 52-78, 

2024, doi: 10.24193/ojmne.2024.45.03. 

[24] M. H. Lin, J. G. Carlsson, D. Ge, J. Shi, and J. F. Tsai, "A 

review of piecewise linearization methods," Math. Probl. 

Eng., vol. 2013, no. 1, p. 101376, 2013, doi: 

10.1155/2013/101376. 

[25] G. M. Masters, Renewable and efficient electric power 

systems. John Wiley & Sons, 2013. 

 

https://journalrmde.com/index.php/jrmde/article/view/34

