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Abstract 

Trust is recognized as a vital component in ensuring secure and stable interactions within Social Internet of Things (SIoT) 

networks. This study introduces an advanced model for simulating multidimensional trust relationships in SIoT, which is 

designed based on Watts–Strogatz (WS) random graphs and successfully reproduces the real topological features of SIoT 

networks with high fidelity. The proposed model incorporates a variety of relationship types such as Co-Location-Based 

Relationships (CLOR), Ownership-Based Relationships (OOR), Social Relationships (SOR), and Popularity-Based 

Relationships (POR), and integrates key attributes including spatial density, interaction frequency, owner reliability, and co-

presence time to deliver a flexible and scalable structure. Analysis of the results indicates that the model performs 

significantly well in replicating topological metrics such as average path length, clustering coefficient, and average degree. 

For instance, in OOR and SOR graphs, the clustering coefficients reached values of 0.9 and 0.7 respectively, and in the 

CLOR graph, the average path length was limited to 2.4. Furthermore, in the POR graph, the average degree was consistently 

maintained at a stable value of 120. A comparison between the proposed model and traditional models such as Erdős–Rényi 

(ER) and Barabási–Albert (BA) graphs reveals that the use of advanced random graphs alongside the integration of additional 

trust-related features significantly enhances the accuracy, flexibility, and analytical capability of SIoT network behavior. In 

addition, the application of gradient descent-based optimization algorithms for fine-tuning model parameters ensures the 

efficiency and structural balance of the model, thereby positioning it as an effective and scalable solution for the analysis 

and development of Social Internet of Things networks. 
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1. Introduction 

The rapid expansion of the Social Internet of Things 

(SIoT) has redefined how objects interact, trust, and form 

relationships within complex dynamic environments. As IoT 

devices increasingly embody social attributes—such as the 

ability to form, maintain, and dissolve connections akin to 

human social networks—the design of trust-based, scalable, 

and realistic SIoT models becomes a critical endeavor in 

both academic and practical domains. Traditional network 

models often fall short of capturing the inherent complexities 

of SIoT environments, especially where relationships are 

multidimensional, evolving, and context-dependent. 

Consequently, the integration of advanced graph-based 

techniques, particularly those that emphasize social 

behaviors, has emerged as a strategic solution to address 

these challenges [1]. 

Trust, a foundational element in human social interaction, 

serves a parallel and indispensable role in the SIoT, 

influencing decisions about data sharing, collaborative 

sensing, and service provision. The pursuit of trust modeling 

in SIoT environments demands the incorporation of 

sophisticated tools capable of mirroring real-world network 

properties such as high clustering, short average path 

lengths, and modular community structures. The Watts–

Strogatz (WS) random graph, with its "small-world" 

characteristics, provides a fertile foundation for simulating 

such realistic social behaviors. Bagheri et al. (2023) 

introduced a modeling approach using WS graphs tailored to 

SIoT, integrating features such as co-location, shared 

ownership, and interaction frequency to enhance trust 

computation and network fidelity [1]. 

Despite these advancements, link prediction—the task of 

estimating the likelihood of future or hidden connections 

between nodes—remains a pivotal component in enhancing 

trust-based decision-making and network resilience in SIoT. 

This is especially significant as the dynamic nature of SIoT 

leads to frequent topology changes. Chi, Qu, and Yin (2022) 

addressed this challenge through attraction force-based 

models for predicting existing links in dynamic networks, 

highlighting the importance of considering both structural 

proximity and node activity [2]. These principles align well 

with SIoT paradigms, where trust and relationships evolve 

in real time, necessitating predictive mechanisms that go 

beyond static assumptions. 

Adding to this, motif-based link prediction has 

demonstrated efficacy in modeling recurring structural 

patterns within social networks. Khadangi et al. (2022) 

proposed a motif-based model for activity prediction on 

platforms like Facebook, showing that such subgraph 

patterns are not only predictive but also representative of 

inherent social logic [3]. In SIoT, where objects may behave 

based on environmental cues or inherited roles (e.g., shared 

location or user behavior), motif-based approaches can help 

in detecting emergent trust structures and predicting future 

interactions. 

The rise of recommender systems and friend suggestion 

mechanisms on social media has offered parallel insights 

into the predictive modeling of links. Kini et al. (2022) 

implemented a link prediction-based approach for friend 

recommendation in social apps, emphasizing scalability and 

contextual relevance [4]. The relevance of such models in 

SIoT becomes evident in contexts such as smart homes or 

healthcare, where objects must autonomously choose peers 

for collaboration based on trust, proximity, and historical 

interactions. By leveraging similar principles, trust-aware 

recommender systems for objects can be established, 

promoting efficiency and reliability. 

Equally important is the robustness of prediction methods 

under noisy or incomplete data—a frequent occurrence in 

large-scale distributed systems like SIoT. Nasiri, 

Berahmand, and Li (2022) addressed this challenge by 

introducing a robust graph regularization-based nonnegative 

matrix factorization model for link prediction, which proved 

effective in dealing with attributed networks [5]. Their 

method allows the integration of node-specific features—

such as interaction history, reliability scores, or location 

metadata—thereby offering a comprehensive approach that 

complements trust modeling in SIoT by accounting for both 

structural and attribute-level information. 

The application of such intelligent models gains 

particular relevance in specialized domains like healthcare, 

where IoT integration is rapidly advancing. Rehman (2025) 

discusses the transformative role of IoT in healthcare, 

underscoring the need for innovation, security, and reliable 

decision-making frameworks [6]. Trust modeling in such 

sensitive environments cannot be decoupled from the 

underlying network architecture. Whether tracking medical 

devices, patient wearables, or hospital systems, the use of 

trust-embedded WS-based SIoT models, combined with 

accurate link prediction algorithms, becomes essential to 

ensure seamless and secure operation. 

Further, scalability remains a major concern in large-

scale SIoT systems. Saketh et al. (2022) proposed a Spark-

based scalable algorithm for link prediction, which leverages 

distributed computing to handle large datasets efficiently [7]. 
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This approach aligns with the needs of SIoT environments 

where billions of smart objects interact continuously. The 

ability to predict links in near-real-time across massive 

networks not only supports trust computation but also helps 

in mitigating risks, identifying malicious actors, and 

optimizing resource allocation. 

Lastly, a direct contribution to trust modeling in SIoT 

comes from the work of Sagar et al. (2023), who developed 

Trust-SIoT—a framework for trustworthy object 

classification. Their model integrates multiple dimensions of 

trust and applies classification techniques to differentiate 

between reliable and unreliable objects [8]. Such 

mechanisms are vital for operationalizing trust in SIoT, 

particularly when decisions must be made autonomously by 

devices with partial or outdated information. By 

incorporating trust scores directly into graph structures and 

prediction algorithms, this approach enhances both the 

interpretability and functionality of SIoT networks. 

In summary, the introduction of advanced graph-based 

models, predictive algorithms, and trust-aware architectures 

represents a significant advancement in SIoT research. The 

integration of Watts–Strogatz graphs with trust metrics and 

scalable prediction techniques responds to the increasing 

demand for realistic, adaptable, and secure SIoT 

environments. Drawing from innovations in social media, 

dynamic networks, healthcare, and scalable computing, this 

study bridges theoretical modeling with real-world 

applications.  

2. Methodology 

Proposed Method 

To model trust in SIoT, more advanced random graphs 

that combine the features of traditional ER and BA graphs 

can be utilized. One suitable graph for this purpose is the 

Watts–Strogatz (WS) random graph. The Watts–Strogatz 

graph is a random model specifically designed to simulate 

the properties of real-world social networks. This graph is 

initially created as a regular circular graph with n nodes, 

where each node is connected to k/2 of its nearest neighbors 

on either side. Then, with a probability p, existing edges are 

rewired to randomly selected nodes in the network. This 

process generates key features such as a high clustering 

coefficient and short average path lengths. The Watts–

Strogatz graph is highly suitable for modeling relationships 

that require both local clustering and global reach, such as 

social relationships in SIoT. By adjusting parameters p and 

k, its topology can be tailored to better fit various types of 

relationships. Table 1 presents the features of the Watts–

Strogatz graph used for trust modeling in SIoT networks 

based on the selected random graph approach. 

Table 1. Features of the Watts–Strogatz Graph 

Description Feature 

Nodes tend to form local clusters, similar to real-world social networks. High clustering coefficient 

Communications between nodes occur faster and the network structure resembles “small-world” properties. Short paths 

Parameters n, k, and p can be adjusted to achieve various topologies. Flexibility 

Construction Process of the Watts–Strogatz Graph 

It includes two stages, each gradually enhancing the 

network. In the first stage, a regular circular graph is 

generated in which each node is connected to its k nearest 

neighbors. This initial structure yields an orderly graph with 

a high clustering coefficient, where nodes are arranged in a 

circle. In the second stage, edges of the graph are rewired 

with a probability p. In this step, each edge (i, j) may be 

removed and randomly connected to another node in the 

network. This rewiring reduces the average path length 

between nodes and introduces "small-world" features while 

preserving the network’s clustering coefficient. 

The enhancement stages of the random graph are as 

follows: 

1. Stage 1: A circular base graph is created where 

each node is connected to k/2 nearest neighbors on 

both sides. 

2. Stage 2: Edges are randomly rewired with a 

probability p to form shorter paths in the network. 

3. Output: A graph that exhibits both a high 

clustering coefficient and small-world 

characteristics. 

The following shows the pseudocode for the proposed 

method of enhancing the random graph using the Watts–

Strogatz construction. 

Pseudocode of the Proposed Method for Enhancing a 

Random Graph Using the Watts–Strogatz Construction 

Input: 

n: Number of nodes 



Bagheri & et al. 

 16 

k: Number of nearest neighbors each node connects to 

p: Rewiring probability 

Output: 

G: Watts–Strogatz random graph 

Algorithm: 

1. Initialize G as an empty graph. 

2. Create n nodes in G and arrange them in a circular 

layout. 

3. Connect each node to its k nearest neighbors: 

4.   For each node i in G: 

5.     For j = 1 to k/2: 

6.       Add an edge between node i and 

node (i + j) mod n. 

7.       Add an edge between node i and 

node (i - j + n) mod n. 

8. Rewire edges with probability p: 

9.   For each edge (i, j) in G: 

10.     Generate a random number r between 0 

and 1. 

11.     If r < p: 

12.       Remove edge (i, j). 

13.       Select a new node k randomly such 

that k ≠ i and (i, k) is not already an edge. 

14.       Add edge (i, k). 

15. Return G. 

 

The Watts–Strogatz graph is highly suitable for modeling 

various relationships in Social Internet of Things (SIoT) 

networks because it can simulate diverse topological 

properties. One of its applications is in CLOR (Co-Location-

Based Relationships), where objects are situated in the same 

physical location and demonstrate high clustering. The 

graph’s high clustering coefficient allows it to effectively 

model such relationships. In OOR (Ownership-Based 

Relationships), objects under the ownership of a single 

individual typically have short paths and direct connections. 

The Watts–Strogatz graph simulates these relationships by 

rewiring edges and reducing the path length between nodes. 

By adjusting the parameters p (edge rewiring probability) 

and k (number of nearest neighbors), various topologies can 

be created. For instance, increasing p makes the graph 

resemble a random network, suitable for dispersed 

relationships, while low p and high k create a clustered 

network better suited to more centralized relationships. 

Proposed Additional Features for CLOR and OOR in 

SIoT 

To enhance trust modeling in SIoT networks, new 

features can be added to CLOR and OOR relationships. 

These features help simulate the network more accurately 

and assess trust more effectively. In CLOR relationships, 

features such as spatial density, presence duration, location 

type, and interaction frequency can significantly impact trust 

between objects. For example, objects located in high-

density areas with long co-presence and frequent 

interactions form stronger relationships and higher 

clustering. In OOR relationships, features such as shared 

ownership, ownership type, owner interactions, and owner 

reliability play a central role. These features can indicate 

how objects under shared ownership form tightly connected 

clusters or how trust among owners influences inter-object 

relationships. These characteristics enable the definition of 

more dynamic and realistic relationships. Table 2 presents 

the features used for trust assessment in SIoT. 

Table 2. Features Used for Trust Assessment in SIoT 

Description Application Feature 

Degree of node density in a specific location. Increases clustering in CLOR relationships. Spatial Density 

Duration of node presence in the shared location. Strengthens stable connections in CLOR 

relationships. 

Presence Duration 

Type of location (e.g., home, office, public space). Influences the dispersion or clustering of CLOR 

relationships. 

Location Type 

Frequency of interactions between nodes in a shared location. Increases trust weight in CLOR relationships. Interaction 

Frequency 

Number of nodes owned by the same individual. Creates complete clusters in OOR relationships. Shared Ownership 

Indicates whether ownership is centralized (individual) or distributed 
(organization). 

Influences overall network structure in OOR 
relationships. 

Ownership Type 

Degree of social interaction among node owners. Increases indirect trust in OOR relationships. Owner Interactions 

Trust level toward node owners (based on behavior or history). Increases edge weight in networks with reliable 
owners. 

Owner Reliability 

 

The use of additional features in modeling SIoT 

relationships offers numerous advantages, enhancing the 

model’s accuracy, flexibility, and efficiency. These features 

allow for more precise definitions of social relationships, 
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especially in scenarios where contextual factors such as 

location, time, and social interactions play a critical role. For 

example, by incorporating features such as spatial density 

and interaction frequency in CLOR relationships, trust 

between nodes can be more accurately assessed and the 

resulting network will exhibit more realistic clustering. 

Additionally, incorporating features such as shared 

ownership and owner reliability in OOR relationships 

enables the identification of key nodes and stronger 

connections. Overall, these features enable SIoT relationship 

modeling to better match real-world data, increase predictive 

capability, and offer more comprehensive trust evaluation 

metrics. This ultimately contributes to the development of 

more stable and trustworthy network structures. 

Proposed Model with the Application of Additional 

Features 

CLOR Graph Structure 

 A graph with high k (greater number of nearest 

neighbors) and low p (lower rewiring probability) 

is used to preserve clustering. 

 The features Type of Location, Time of Co-

presence, Spatial Density, and Interaction 

Frequency are incorporated into edge weights to 

more accurately and realistically model local 

connections. 

OOR Graph Structure 

 A graph with moderate values of k and p is used to 

achieve shorter paths and a more dispersed 

structure. 

 The features Owner Interaction, Type of 

Ownership, Shared Ownership, and Reliability 

are included in edge weights to model ownership-

based trust. 

Edge Weight Adjustment 

CLOR (Co-location-Based Relationships): Edge 

weights are computed based on location- and interaction-

related features: 

(1) 

w_ij = α1 × SpatialDensity + α2 × TimeOfCoPresence + 

α3 × InteractionFrequency + α4 × TypeOfLocation 

In this equation: 

 SpatialDensity refers to the density of nodes in a 

given area. 

 TimeOfCoPresence is the duration of time that 

nodes are present in the same shared location. 

 InteractionFrequency indicates the number of 

interactions between nodes in that shared space. 

 TypeOfLocation reflects whether the location is 

public or private. 

 α1 denotes the importance of spatial density in 

determining edge weights; higher α1 gives more 

weight to nodes in densely populated areas. 

 α2 represents the importance of shared time; higher 

α2 favors nodes that spend more time together. 

 α3 indicates the significance of interaction 

frequency; higher α3 increases the weight for 

frequently interacting nodes. 

 α4 captures the influence of location type, where 

higher α4 amplifies the impact of specific locations. 

OOR (Ownership-Based Relationships): Edge weights 

are calculated based on ownership-related features: 

(2) 

w_ij = β1 × SharedOwnership + β2 × OwnerInteraction + 

β3 × Reliability + β4 × TypeOfOwnership 

In this equation: 

 SharedOwnership is the number of objects jointly 

owned. 

 OwnerInteraction refers to the degree of social 

interaction between owners. 

 Reliability is the trust level attributed to an owner. 

 TypeOfOwnership distinguishes whether the 

ownership is individual or organizational. 

 β1 represents the significance of shared ownership; 

higher β1 increases the edge weights among 

commonly owned nodes. 

 β2 reflects the impact of owner interactions; higher 

β2 strengthens the connections among more 

sociable owners. 

 β3 indicates the level of trust in the owner; higher 

β3 gives more weight to edges associated with 

trustworthy owners. 

 β4 captures the effect of ownership type on edge 

weights, where a higher β4 may enhance either 

organizational or personal relationships. 

Indirect Trust 

To calculate the indirect trust between two nodes i and j, 

all possible paths and edge weights are used: 

(3) 

Trust(i, j) = ∑ over all Paths(i, j) ∏ over all edges (u, v) 

in path w_uv 

In the above relation, Paths(i, j) represents the set of all 

possible paths between nodes i and j, and w_uv is the weight 

of the edge between nodes u and v. 

Scalability Evaluation 
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To evaluate scalability: 

1. Graphs are generated with varying numbers of 

nodes (n). 

2. Topological properties such as clustering 

coefficient and average path length are examined. 

3. The stability of edge weights and trust assessment 

outcomes are analyzed across different network 

sizes. 

In this model, by employing features such as Spatial 

Density, Time of Co-presence, and Interaction Frequency 

for CLOR relationships, and Shared Ownership, Owner 

Interaction, and Reliability for OOR relationships, the edge 

weights are adjusted based on node interactions and physical 

locations. Normalization is then applied to preserve network 

balance and stability. This approach enables more precise 

simulation of actual social behaviors and ownership-based 

trust in SIoT while allowing the tuning of weight coefficients 

(α and β) and parameters k and p, thereby offering high 

flexibility and ensuring desirable scalability even in large-

scale networks. 

3. Findings and Results 

In this section, the proposed method based on the Watts–

Strogatz random graph is examined and evaluated for 

modeling social relationships in SIoT networks. The main 

objective is to analyze the performance, scalability, and 

efficiency of this approach compared to standard models and 

existing methods using topological indicators such as 

average path length, clustering coefficient, and average 

degree. 

For this purpose, real trust data among users were 

obtained from the Trustlet website (including 49,288 users 

and 487,183 directed edges). After preprocessing, the data 

were prepared for simulation and analysis using tools such 

as Pajek, MATLAB, and R. The proposed algorithms were 

implemented in MATLAB on a laptop system equipped with 

an Intel Core i7 processor and 8 GB of RAM, which enabled 

the management of complex computations and the 

generation of large graphs. All simulations—including edge 

weighting, computation of topological metrics, and 

evaluation of trust measures—were conducted with high 

precision. The results demonstrated superior performance of 

the proposed method in preserving topological features and 

providing a more stable and reliable structure compared to 

conventional models. This marks a significant step in 

applying advanced random graphs for analyzing social 

relationships in SIoT. 

Comparison and Evaluation of the Proposed System 

Since Twitter datasets are constantly evolving in real-

time and community structures may change, evaluation 

criteria such as NMI (Normalized Mutual Information) 

cannot be used. This is because in such networks, the number 

of communities is not predetermined. Therefore, internal and 

external density metrics are used. These metrics evaluate the 

quality of communities, and for this purpose, the following 

condition (Equation 4) must be satisfied: 

(4) 

δ_int > ρ > δ_ext 

Where ρ is the overall graph density, δ_int is intra-cluster 

density, and δ_ext is inter-cluster density. The intra-cluster 

density should be significantly higher than the overall graph 

density, while the inter-cluster density should be lower than 

the overall density. The cohesion of edges in a graph can be 

conveniently calculated using graph density ρ, defined as 

follows [7]: 

(5) 

ρ = m / (n × (n − 1) / 2) 

Where n is the number of nodes, m is the number of edges, 

and n × (n − 1) / 2 is the maximum possible number of edges. 

The internal density is calculated using: 

(6) 

δ_int(C) = m_c / (n_c × (n_c − 1) / 2) 

And the external density is calculated using: 

(7) 

δ_ext(C) = m_c / (c × (n − n_c)) 

Evaluation of the Proposed Random Graph 

The following charts compare three main features 

(average path length, clustering coefficient, and average 

degree) across six result tables. Considering the main 

objective of the study—which is trust modeling in Social 

Internet of Things (SIoT) networks using Watts–Strogatz 

random graphs—the experimental results indicate that the 

proposed algorithm is capable of preserving key topological 

properties across various network scales. In experiments 

conducted on the OOR graph with fixed parameters p = 0.01 

and k = 1000, the average path length (l) increased from 1.2 

to 2.17 as the number of nodes rose from 1000 to 16216, 

indicating the preservation of “small-world” structure and 

the potential for fast communication within the network. 

Furthermore, the clustering coefficient (CC) remained 

approximately constant at around 0.7 in larger networks and 

even reached 1 in smaller networks, demonstrating effective 

simulation of social relationships and local interactions in 

SIoT. Additionally, the average degree (d) remained nearly 

constant across all network sizes (between 998 and 1000), 
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signifying the stability of connection structures and desirable 

scalability of the proposed algorithm. Moreover, the results 

obtained from the POR graph with p = 0.9 and k = 120 show 

that, with increasing numbers of nodes, the average path 

length increased from 1.8 to 2.4, while the clustering 

coefficient decreased and the average degree remained 

stable at 120. Similarly, in the SOR graph with p = 0.05 and 

k = 50, the average path length remained nearly constant, 

and the clustering coefficient increased in smaller networks. 

The following charts, which separately compare average 

path length, clustering coefficient, and average degree across 

six result tables, clearly show that varying parameter settings 

causes logical changes in the topological properties of 

networks, and that the proposed algorithm can effectively 

deliver a stable, efficient, and scalable structure for trust 

modeling in SIoT. 

Results of the Proposed Method Using the Watts–

Strogatz (WS) Graph 

This section examines the results of experiments 

conducted using the Watts–Strogatz random graph for trust 

modeling in Social Internet of Things (SIoT) networks. In 

analyzing these results, topological indicators such as 

average path length (l), clustering coefficient (CC), and 

average degree (d) were employed as key metrics to assess 

model performance across different network scales. For 

example, in the OOR graph with fixed values p = 0.01 and k 

= 1000, it was observed that as the number of nodes 

increased from 1000 to 16216, the average path length rose 

from 1.2 to 2.1, still reflecting the preservation of “small-

world” structure and rapid node communication. At the same 

time, the clustering coefficient remained stable at 

approximately 0.72 in larger networks and reached as high 

as 1 in smaller ones, which indicates enhanced local 

connections in smaller networks. Additionally, the average 

degree remained almost constant, reflecting the stability of 

the connection structure within the model. 

For other relationship types such as POR and SOR, 

similar behaviors were observed. In the POR graph with p = 

0.9 and k = 120, the average path length gradually increased 

from 1.9 to 2.4, while the clustering coefficient decreased as 

the network size increased, yet the average degree remained 

stable at 120. Also, in the SOR graph with p = 0.05 and k = 

50, the average path length remained relatively stable, and 

the clustering coefficient increased in smaller networks. 

Additionally, the results obtained for the OOR graph with 

extremely small parameters such as p = 0.00009 showed that 

although the average path length increased with the number 

of nodes, the clustering coefficient significantly improved, 

and the average degree also rose considerably. 

In general, these results confirm that the proposed 

algorithm, through appropriate parameter tuning, has 

successfully maintained the topological properties necessary 

for trust modeling in SIoT networks at various scales and has 

provided a stable, efficient, and reliable structure. The charts 

also present a comparative view of key metrics including 

average path length (l), clustering coefficient (CC), and 

average degree (d) for various graphs such as SOR, POR, 

OOR, and the proposed method against different numbers of 

nodes (n). These charts indicate the robustness of the 

proposed method in preserving network structures and 

enhancing scalability with an increasing number of nodes. 

The experimental results show that while average path 

length (l) increases slightly with the number of nodes, it 

remains within a reasonable range—indicating that the 

“small-world” structure in the Watts–Strogatz graph is 

preserved, thereby ensuring fast and efficient 

communication among nodes. Additionally, the high 

clustering coefficient (CC) obtained in the proposed method 

illustrates the effective simulation of social relationships and 

local interactions in SIoT networks. In other words, strong 

network clustering accurately reflects the real behavioral 

patterns of social relationships among objects. Furthermore, 

the average degree (d) remained constant as the number of 

nodes increased, which demonstrates the desirable 

scalability of the proposed method and the stability of the 

connection structure in large-scale networks. 

Comparison with the Original Random Graph 

Method 

The charts presented in the figure below compare the 

performance of the initial proposed method with the 

improved proposed method (i.e., the enhanced model 

developed in this study) across three key metrics: average 

path length (l), clustering coefficient (CC), and average 

degree (d) at various network sizes (n). According to the 

analyses conducted, the charts demonstrate that the 

improved proposed method consistently provides shorter 

paths than the initial method as the number of nodes 

increases. This feature is particularly important in large-

scale networks, as shorter paths indicate faster and more 

efficient communication between nodes. Furthermore, the 

clustering coefficient (CC) chart shows that the improved 

method provides a higher clustering coefficient across all 

network sizes. This indicates the method’s capability to form 

stronger local clusters and enhance social relationships and 

trust within the SIoT framework. Additionally, the average 
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degree (d) chart illustrates that, although both methods 

follow a similar trend as network size increases, the 

improved method delivers a more balanced degree 

distribution, especially in larger networks. This balance in 

connectivity ensures greater network robustness and 

resilience to potential faults. 

In summary, the analysis results show that incorporating 

additional features such as Spatial Density, Interaction 

Frequency, and Owner Reliability has significantly 

improved the performance of the proposed model compared 

to the initial method. In the original random graph method, 

certain parameters exhibited more variability as the number 

of nodes increased, whereas the improved proposed method 

showed enhanced scalability and reduced variability. The 

clustering coefficient in the improved model is more 

accurate and refined for POR and SOR graphs, which helps 

strengthen social relationships and local trust in SIoT 

networks. These findings validate the high efficiency of the 

Watts–Strogatz-based proposed method for modeling social 

relationships in Social Internet of Things networks. 

 

Figure 1. Comparison of Path Length, Clustering Coefficient, and Average Degree Between the Proposed and Improved Methods 

Evaluation of the Model's Capability in Simulating 

Different Relationship Types: POR, SOR, OOR, CLOR 

The charts presented in the figure below compare the 

performance of the proposed and improved methods across 

four types of relationships in Social Internet of Things 

(SIoT) networks—namely, SOR, OOR, CLOR, and POR—

based on four key features: Spatial Density, Owner 

Interaction, Time of Co-presence, and Interaction 

Frequency. The results for different SIoT network 

relationships show that the improved proposed method 

significantly outperforms the initial method in more 

accurately simulating social interactions and 

communications. For example, in the CLOR relationship, 

the features Interaction Frequency and Spatial Density have 

increased in the improved model, indicating enhanced 

capability in simulating local communications and 

geographically based interactions among nodes. Moreover, 

the substantial improvement in Time of Co-presence 
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demonstrates that the new model better accounts for the 

duration of shared presence among nodes in different 

locations, thereby providing a more realistic reflection of the 

network structure. 

In the OOR relationship, the considerable increase in the 

Owner Interaction feature in the improved method indicates 

stronger social interactions among node owners and an 

increased level of trust within the network. Additionally, the 

rise in Spatial Density and Interaction Frequency values in 

this relationship suggests an improved clustering structure 

and better management of ownership-based 

communications. On the other hand, in the SOR relationship, 

the charts show that all features—including Interaction 

Frequency and Owner Interaction—have improved in the 

enhanced model compared to the initial method. These 

improvements reflect the model's ability to more accurately 

capture social relationships and interactions between 

network nodes. In the POR relationship as well, improved 

performance is observed through increased values of Spatial 

Density and Interaction Frequency, along with enhanced 

Time of Co-presence and Owner Interaction, which 

contribute to strengthening the connections among nodes 

sharing a common brand. 

Overall, the charts clearly show that the improved 

proposed method outperforms the initial method across all 

relationships (SOR, OOR, CLOR, and POR) and features. 

The enhancements in clustering, reinforcement of social and 

local interactions, and more accurate simulation of social 

behavior relationships contribute to improved efficiency and 

accuracy in trust analysis within SIoT networks. These 

advancements underscore the importance of incorporating 

additional features such as Spatial Density and Interaction 

Frequency in relationship modeling, and they highlight the 

emphasis on scalability and network structural stability. 

 

Figure 2. Model Capability in Simulating Various Relationships: CLOR, OOR, SOR, POR 

 

Based on the driving power–dependency diagram, it can 

be stated that the variable “Role of Banks in Supporting 

Energy Projects” (C01), along with “Credit Evaluation 

Indicators of Energy-Based Companies” (C04) and 

“Banking and Credit Policies for the Energy Industry” 

(C06), are located in the independent quadrant, indicating 

high influence and low dependency—meaning they 

significantly affect the system while being less affected by 

it. 

The variables “Risk Management in Energy Projects” 

(C05), “Stability and Sustainability of Energy-Based 

Companies” (C07), and “Banking Facilities Applicable to 
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Oil, Gas, and Petrochemical Projects” (C02) fall within the 

linkage quadrant, characterized by both high influence and 

high sensitivity. These are dynamic variables whose small 

changes can trigger major transformations in the system. 

The variable “Financing Challenges in the Oil and Gas 

Industry” (C03) falls in the dependent quadrant, meaning it 

is strongly influenced by other variables but has weak 

influence over the system itself. 

It is noteworthy that no variable is located in the 

autonomous quadrant. 

4. Discussion and Conclusion 

The findings of the present study demonstrate the efficacy 

of the proposed Watts–Strogatz (WS) random graph-based 

model in preserving topological integrity and ensuring 

scalable, trust-aware network formation in the Social 

Internet of Things (SIoT). By evaluating key topological 

metrics such as average path length, clustering coefficient, 

and average degree across various network configurations—

including CLOR, OOR, POR, and SOR—the model 

effectively mirrored small-world characteristics while 

maintaining structural stability and trust propagation. The 

average path length increased gradually with node count, yet 

remained within a bounded range (e.g., from 1.2 to 2.4), 

indicating continued efficiency in communication. The 

clustering coefficient remained high, especially in localized 

structures such as CLOR and OOR graphs, validating the 

preservation of social logic and proximity-based trust. 

Furthermore, the model sustained a consistent average 

degree even in large-scale networks, which reinforces its 

scalability and robustness. 

These results align closely with the conclusions drawn by 

Bagheri et al. (2023), who confirmed that integrating 

topological features such as spatial density and co-presence 

time into a WS-based SIoT framework enhances the 

modeling of trust-based relationships [1]. The stability of 

network properties across varying sizes also supports the 

scalability criteria essential for real-world deployment in 

SIoT systems. Particularly in the OOR graph, where p = 0.01 

and k = 1000, the model maintained a clustering coefficient 

above 0.7 and exhibited minimal growth in path length, 

underscoring the resilience of local trust communities in the 

face of network expansion. Similarly, in the POR graph, 

despite a relatively high rewiring probability (p = 0.9), the 

average degree remained constant, and the increase in path 

length was moderate—indicating that even in dispersed, 

popularity-based relationships, the model's structural 

coherence is preserved. 

The ability of the proposed method to maintain consistent 

clustering behavior also echoes the findings of Chi et al. 

(2022), who emphasized the role of attraction force in 

reinforcing existing connections within dynamic networks 

[2]. Their work demonstrated that link prediction models 

that account for node interactivity and affinity preserve 

cohesive structures over time. In our model, the strong 

clustering observed—particularly in smaller networks—

demonstrates that localized interactions remain dominant 

even as the network scales, which is crucial for trust 

inference and community resilience in SIoT. 

Additionally, the motif-based perspectives offered by 

Khadangi et al. (2022) provide further grounding for our 

model's effectiveness in detecting and replicating 

substructures common to social interactions [3]. The 

proposed model, by incorporating subgraph-based weights 

through features like co-location and shared ownership, 

naturally supports motif patterns that have proven effective 

in trust prediction. This capacity for structural mimicry aids 

in distinguishing between trustworthy and non-trustworthy 

nodes, which is a foundational aspect of SIoT functionality. 

The predictability and robustness of the model were 

further validated by its performance in the SOR graphs, 

where path lengths remained stable, and clustering increased 

in smaller networks. This aligns with the robustness 

framework proposed by Nasiri et al. (2022), who argued that 

incorporating attribute-based regularization into prediction 

models strengthens network behavior under uncertainty [5]. 

Our model's ability to handle different relationship types 

(social, spatial, and ownership-based) and consistently 

produce reliable topological outputs supports this assertion 

and highlights the importance of multi-attribute edge 

weighting schemes in SIoT trust systems. 

Friend recommendation systems in social networks, such 

as those studied by Kini et al. (2022), reinforce the relevance 

of link prediction for establishing trustworthy relations in 

dynamic environments [4]. The consistent average degree 

and high clustering in our model suggest that similar logic 

can be applied to SIoT nodes, allowing them to 

autonomously select trusted partners for data exchange or 

task delegation. The incorporation of spatial and temporal 

interaction data in our model’s edge weights parallels the 

contextual criteria used in social media for suggesting 

connections, underscoring a strong cross-domain 

applicability. 
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The model’s applicability to large-scale, distributed 

systems is further emphasized by its alignment with Spark-

based scalable algorithms such as that proposed by Saketh et 

al. (2022) [7]. As networks increase in size, maintaining 

topological fidelity and computational efficiency becomes 

paramount. The WS-based approach, by preserving average 

degree and controlling path length growth, satisfies these 

scalability requirements, thereby supporting the needs of 

real-time applications such as urban IoT deployments or 

industrial monitoring systems. 

In sensitive domains like healthcare, where SIoT 

deployment is both critical and constrained by trust issues, 

our model offers direct utility. Rehman (2025) stressed the 

importance of integrating secure and reliable mechanisms in 

IoT-driven healthcare systems [6]. The model’s performance 

in preserving local interactions and maintaining trust paths 

across various network conditions supports its application in 

such contexts, where both reliability and latency are non-

negotiable. For instance, medical devices operating in a 

hospital network can benefit from trust-aware routing and 

decision-making that the proposed WS-based SIoT model 

can facilitate. 

Moreover, the integration of trust classification into the 

SIoT graph structure—akin to the Trust-SIoT framework 

developed by Sagar et al. (2023)—underscores the value of 

multidimensional trust modeling in our approach [8]. Their 

classification strategy emphasizes behavior analysis and 

network positioning, both of which are inherently supported 

in our model through dynamic edge weighting based on 

ownership, interaction, and spatial parameters. Thus, our 

model not only predicts connectivity but also enables 

qualitative differentiation of trustworthiness among nodes. 

Despite its promising results, the proposed model is not 

without limitations. First, the dependency on pre-defined 

feature weights (α and β) introduces subjectivity and may 

affect generalizability across different contexts. The model 

assumes consistent behavior patterns across all nodes, which 

may not hold true in highly heterogeneous or adversarial 

environments. Moreover, while the WS graph captures 

small-world properties, it may not reflect scale-free 

characteristics observed in some real-world SIoT 

deployments. Additionally, the use of static rewiring 

probability p across different graph types may oversimplify 

complex evolving network dynamics. Finally, simulation 

environments—though carefully calibrated—cannot fully 

replicate real-time system variability, especially when 

external shocks or attacks are introduced. 

Future studies should explore the integration of adaptive 

learning mechanisms to optimize weight parameters (α, β) 

dynamically, based on real-time feedback from network 

operations. Investigating hybrid graph models that combine 

small-world and scale-free properties may offer better 

fidelity in representing diverse SIoT environments. The 

incorporation of adversarial simulation frameworks can also 

help assess model robustness against malicious actors. 

Additionally, extending the model to support temporal graph 

evolution and dynamic role changes among nodes can 

enhance its applicability in mobile or mission-critical 

networks. Machine learning-driven link prediction and trust 

estimation models can be embedded to further automate and 

personalize network behavior. 

Practitioners deploying SIoT systems should consider 

using the proposed WS-based graph structure when trust, 

local clustering, and communication efficiency are 

priorities. The ability to define edge weights based on 

contextual attributes such as location, ownership, and 

interaction frequency allows for customized trust models 

suited to domain-specific requirements. For instance, smart 

city administrators can apply this model to traffic 

management or environmental monitoring, ensuring stable, 

trust-based communication between devices. In healthcare, 

the model can support secure device interoperability. To 

maximize effectiveness, deployment teams should calibrate 

parameter settings based on empirical usage data and 

continuously monitor performance metrics to ensure 

sustained trust propagation and structural resilience. 
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