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Abstract 

Given the increasing demand for efficient and rapid execution of large language models (LLMs) within variable and 

resource-constrained infrastructures, the use of reinforcement learning (RL) algorithms as intelligent decision-making tools 

for resource allocation is of critical importance. This article, based on real CPU usage data and simulated values for other 

influential factors such as latency, energy consumption, and bandwidth, constructs a more realistic environment for 

evaluating resource allocation policies. In the core algorithmic section, three methods have been implemented and compared: 

Q-Learning as the primary reinforcement approach, SARSA as a similar method more sensitive to the decision sequence, 

and a Fixed-Policy method as the baseline for comparison. The state space is composed of normalized CPU data and other 

attributes, while the action space includes combinations of GPU count and data/model/hybrid processing types. The designed 

reward function is multi-objective, incorporating a balanced mix of factors such as low CPU and memory usage, reduced 

latency, lower energy consumption, and high bandwidth. Simulation results revealed that Q-Learning achieved the best 

average performance among the three algorithms. Numerically, the values obtained for Q-Learning were reported as 

Accuracy = 0.85, Precision = 0.83, F1-Score = 0.84, and Mean Total Reward = 26.7. In comparison, SARSA recorded 

respective values of 0.79, 0.76, 0.77, and 22.4, while the Fixed-Policy approach yielded the weakest outcomes at 0.74, 0.71, 

0.72, and 19.6. Additionally, Q-Learning also demonstrated superior energy efficiency and latency, which are operationally 

vital in cloud environments. This simulation confirmed that Q-Learning can adaptively and intelligently optimize resource 

allocation under complex and dynamic conditions, offering better performance than alternative methods. 
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1. Introduction 

The rapid expansion of large language models (LLMs), 

particularly transformer-based architectures such as BERT, 

GPT, and their successors, has significantly advanced the 

state of the art in natural language processing (NLP) and 

generative AI. These models, originally popularized by 

architectures such as Transformer [1], require extensive 

computational resources for training and inference due to 

their scale, which may exceed hundreds of billions or even 

trillions of parameters. The sheer size of these models 

demands not only high-performance hardware but also 

intelligent strategies for efficient resource allocation, 

particularly in distributed and heterogeneous computing 

environments. Traditional static methods of resource 

allocation, while predictable and easy to implement, are 

increasingly proving to be inadequate in meeting the 

dynamic requirements of LLM workloads [2]. 

In response to these challenges, researchers have turned 

to reinforcement learning (RL) as a promising approach to 
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dynamic and adaptive resource scheduling in cloud and edge 

infrastructures. RL’s capacity to learn optimal policies 

through interaction with complex and uncertain 

environments makes it a powerful tool for adaptive decision-

making in resource-constrained settings [3, 4]. Particularly 

in the context of LLMs, where workloads vary dramatically 

due to input sequence lengths, model configurations, and 

user demands, RL-based resource scheduling allows for 

responsive and context-aware allocation strategies that 

improve system performance, reduce latency, and optimize 

energy efficiency [5, 6]. 

Several strands of research have recently converged on 

the application of RL to LLM execution optimization. A 

growing body of work has explored multi-agent and multi-

objective RL algorithms to manage complex trade-offs 

between latency, energy consumption, memory utilization, 

and throughput across clusters of GPUs [7, 8]. These 

algorithms dynamically allocate GPU resources, determine 

optimal batch sizes, or choose among different 

parallelization strategies (data, model, or hybrid) based on 

real-time system states and performance feedback [9, 10]. 

By treating the resource allocation problem as a Markov 

Decision Process (MDP), researchers have been able to 

model system states and actions in a structured way, using 

reward functions that capture the multidimensional 

performance goals of LLM systems [11]. 

A major challenge in deploying LLMs at scale is the 

optimization of parallelism strategies. Model parallelism, in 

which the model is split across multiple devices, and data 

parallelism, in which different data batches are processed in 

parallel, each have benefits and limitations depending on the 

workload and hardware characteristics [12, 13]. For 

instance, data parallelism can result in duplicated model 

states and communication overhead, while model 

parallelism may suffer from uneven workload distribution 

and memory bottlenecks. Adaptive hybrid approaches that 

dynamically adjust between these modes based on system 

state have shown superior performance but require 

sophisticated control logic [14, 15]. 

Recent advancements in adaptive scheduling have been 

facilitated by integration with runtime systems and 

orchestration frameworks. Research by Narayanan et al. [16] 

demonstrated that highly optimized LLM training across 

GPU clusters can be significantly enhanced by combining 

pipeline parallelism and memory-efficient scheduling. 

Similarly, technologies like ZeRO [13] have shown that 

careful memory optimization can make it feasible to train 

trillion-parameter models by offloading and partitioning 

optimizer states, gradients, and parameters. However, these 

methods still benefit from adaptive, learning-based 

controllers that determine the best course of action based on 

real-time performance metrics. 

To address this need, weighted actor-critic methods and 

asynchronous algorithms such as A3C have been proposed 

to handle dynamic scheduling problems at runtime [17]. 

These methods can simultaneously learn from and adapt to 

streaming telemetry data—such as CPU load, memory 

usage, and network throughput—allowing the scheduler to 

make fine-grained resource allocation decisions. Moreover, 

the use of multi-objective RL allows for balancing multiple 

conflicting goals, such as minimizing latency while 

maximizing throughput or maintaining thermal constraints 

[8]. 

Edge computing environments further complicate the 

picture. In contrast to centralized cloud infrastructures, edge 

environments are characterized by severe resource 

constraints and variability in connectivity and computational 

power. This makes adaptive scheduling not just beneficial 

but essential. Studies such as that by Zhang and Wang [18] 

demonstrate that RL-driven resource schedulers can 

significantly improve inference efficiency for LLMs 

deployed in edge-to-cloud pipelines. The application of RL 

to this domain enables the scheduler to anticipate changes in 

resource availability or demand and proactively reassign 

tasks or adjust parallelism strategies. 

The role of reward function design is pivotal in RL-based 

scheduling systems. An effective reward function must 

capture the complex trade-offs inherent in LLM execution. 

Researchers have proposed composite reward functions that 

integrate weighted performance metrics such as normalized 

latency, memory utilization, energy consumption, and 

bandwidth throughput [6, 9]. These metrics, once 

normalized and balanced, allow the RL agent to learn 

policies that generalize across different workload patterns 

and system configurations. The fine-tuning of these weights 

is often driven by system-level objectives—such as favoring 

lower power draw in mobile environments or minimizing 

end-to-end delay in interactive applications [15]. 

Moreover, the practicality of implementing RL-based 

schedulers has been enhanced by modern simulation and 

training toolkits. MATLAB RL Toolbox, PyTorch, 

DeepSpeed, and Colossal-AI now support the integration of 

RL controllers into training pipelines, making it feasible to 

simulate thousands of resource allocation scenarios before 

deployment [7, 11]. These platforms allow for the generation 

of pretraining data under controlled conditions, followed by 
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fine-tuning in real-world environments to ensure robust 

policy performance. 

Another promising direction involves dynamic batch size 

adjustment during model execution, as explored by Sun [10]. 

Here, the agent dynamically adjusts batch size in response to 

real-time memory availability and latency requirements. 

This form of adaptive micro-management complements 

higher-level scheduling decisions and offers additional gains 

in throughput and system stability. Taken together, these 

innovations underscore the growing consensus that RL 

provides a powerful paradigm for managing the dynamic, 

heterogeneous, and performance-sensitive environments in 

which LLMs operate. 

Finally, broader theoretical and empirical evaluations 

confirm the superiority of learning-based over static 

resource allocation methods in many scenarios. As shown by 

comparative studies across Q-Learning, SARSA, and Fixed-

Policy methods, RL-based schedulers consistently 

outperform baselines in terms of classification accuracy, 

decision quality (Precision, Recall, F1-Score), and energy 

efficiency [3-5]. ROC curve analyses and confusion matrix 

evaluations further reinforce these findings by highlighting 

higher true positive rates and reduced misclassification in 

RL-driven scheduling. 

In conclusion, as LLMs continue to evolve in scale and 

complexity, traditional resource management approaches 

are no longer sufficient. The integration of reinforcement 

learning into resource scheduling and parallelization 

strategies represents a transformative step toward building 

intelligent, self-optimizing systems capable of adapting in 

real-time to fluctuating demands and constraints.  

2. Methodology 

In this study, a reinforcement learning (RL)-based 

framework is presented for optimal resource allocation 

during the execution of large language models (LLMs). The 

objective is to design an intelligent agent capable of making 

adaptive decisions under dynamic conditions regarding 

parallel processing strategies (model, data, or hybrid) and 

resource allocation (GPU, memory, bandwidth). 

2.1. MDP-Based Decision-Making Modeling: 

This section outlines the proposed framework for 

adaptive resource allocation optimization in the parallel 

processing of LLMs. The framework is based on RL and 

aims to train an agent capable of making optimal decisions 

in dynamic environments concerning parallelization type 

and resource allocation (number of GPUs, memory, 

bandwidth). The main innovation lies in the dynamic design 

of the resource allocation policy during runtime, which is 

particularly crucial in non-stationary environments such as 

cloud or edge infrastructures. 

2.2. Defining the RL Environment in MDP Modeling: 

The problem is defined as a Markov Decision Process 

(MDP) with the following components: 

• State Set (S): Each state S ∋ t^s includes features 

such as GPU load, memory usage, current 

execution time, batch size, and available 

bandwidth: 

• t^s = {GPU load, Memory usage, Batch size, 

Latency, Network bandwidth} 

• Action Set (A): Each action S ∋ t^a represents a 

decision regarding parallelization type and resource 

allocation, with a transition function P(s_t+1 | s_t, 

a_t) representing the probability of reaching the 

next state after performing an action in the current 

state. 

• Reward Function (R): R(s_t, a_t) provides 

feedback received by the agent and serves as a 

criterion for evaluating its decision. 

• Decision Model (π): π(s_t, a_t) is a function that 

selects the appropriate action based on the current 

state. The agent's objective is to find the optimal 

policy π* that maximizes the cumulative 

discounted reward over time, defined as: 

• π* = arg max_π E [ ∑(k=0)^∞ γ^k R(s{t+k}, 

a_{t+k}) ] 

• where γ ∈ [0,1] is the discount factor. 

2.3. Multi-Objective Reward Function Design: 

The designed reward function is a weighted combination 

of several key criteria used to evaluate overall system 

performance: 

R(s_t, a_t) = latency^r * w₁ + memory^r * w₂ + 

throughput^r * w₃ + energy^r * w₄ 

Where the normalized metrics are defined as: 

• latency^r = latency(s_t, a_t) / max^latency 

• memory^r = memory usage(s_t, a_t) / 

max^memory 

• throughput^r = throughput(s_t, a_t) / 

max^throughput 

• energy^r = energy(s_t, a_t) / max^energy 
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The weights wᵢ can be adjusted based on system priorities 

such as performance, energy consumption, or memory 

efficiency. This multi-objective design allows balancing 

conflicting goals and enables more effective learning. 

2.4. Reinforcement Learning Algorithm and 

Implementation Method: 

Given the continuous nature of the state space and the 

complexity of decision-making in real environments, using 

deep reinforcement learning algorithms such as Deep Q-

Network (DQN) or Proximal Policy Optimization (PPO) is 

appropriate. These algorithms enable learning optimal 

policies in dynamic and complex environments. In the 

simulation of this study, implementation is considered using 

MATLAB Reinforcement Learning Toolbox combined with 

runtime tools such as PyTorch/DeepSpeed or Colossal-AI. 

2.5. State Space Definition: 

At each time step t, the agent must observe the current 

system state and make a decision accordingly. This state is 

represented as a feature vector with the following elements: 

t^s = {GPU_load, Memory_usage, Batch_size, Latency, 

Network_bandwidth} 

• GPU_load: Average workload on GPUs (range 

from 0 to 1) 

• Memory_usage: Percentage of RAM or GPU 

memory usage 

• Batch_size: Current input batch size 

• Latency: Execution time of the last batch 

• Network_bandwidth: Network bandwidth in the 

distributed environment 

These data are extracted from simulation monitoring 

tools, and normalization steps are discussed subsequently. 

2.6. Normalization of Features and Reward Metrics: 

To reduce the impact of variable scale differences during 

agent training, all performance metrics are normalized to the 

[0,1] range using the following min-max normalization 

formula: 

norm^x = (x - min^x) / (max^x - min^x) 

Here, x represents the actual value of the variable, and 

min^x and max^x are derived from empirical or simulated 

data. This normalization is applied to both input features and 

reward function metrics such as latency, memory usage, and 

throughput. 

In the action space structure, the agent must make a 

decision at each step regarding resource allocation and 

parallelization type. Each action is modeled as the following 

vector: 

t^a = [Parallelism_type, Num_GPU, Mem_alloc] 

• Parallelism_type: The type of parallelization used 

(Data, Model, Hybrid), mapped to a discrete space 

• Num_GPU: The number of allocated GPUs, in a 

discrete space 

• Mem_alloc: The amount of memory allocated to 

each node, in a continuous space 

This combination of discrete and continuous action 

spaces forms a Hybrid Action Space, which must be 

managed using algorithms such as Hybrid PPO or Soft 

Actor-Critic (SAC). 

To enhance learning efficiency, a two-stage training 

strategy is employed for the RL agent: 

1. Pretraining: Conducted in MATLAB using 

generated data for various resource allocation 

scenarios. This stage allows the agent to acquire an 

initial model. 

2. Fine-tuning: Performed in the real environment to 

better adapt to actual runtime conditions. This 

combination improves training stability and 

reduces convergence time. 

The overall flowchart of the RL agent learning process in 

the proposed framework operates as follows: 

• The agent receives the current state t^s from the 

environment. 

• The agent selects action t^a using the current 

model. 

• The selected action is applied to the environment. 

• The environment returns the new state t^s+1 and 

the reward R(s_t, a_t). 

• The agent updates its learning network using an 

algorithm (e.g., PPO). 

• The process continues until the optimal policy π* is 

learned. 

According to the above explanation, the block diagram of 

the reinforcement learning framework for resource 

allocation in the parallel processing of LLMs is illustrated 

below. 
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Figure 1. General Flowchart of the Modeling Process 

 

The main components of the environment diagram 

include the LLM model, hardware (GPUs, memory, 

network), the RL learning agent that acts based on policy π, 

and the reward function that combines multiple criteria such 

as execution time, memory usage, and energy 

consumption—serving as a guide for the agent’s decision-

making in each state. 

3. Findings and Results 

In this section, adaptive optimization of resource 

allocation for parallel processing of large language models 

using reinforcement learning (RL) algorithms is practically 

implemented via MATLAB software. The system uses 

approximately 8,000 real data points (Azure VM 

Performance) to evaluate the performance of baseline RL 

algorithms, which learn the optimal action in each state using 

a Q-matrix. Under this framework, the reward function 

comprises several key components—latency, memory, 

power, and network bandwidth—which are normalized and 

equally weighted in the reward calculation. Additionally, the 

stateFunc determines the state (e.g., average CPU load) in a 

discrete format, and decodeAction maps the action index to 

the corresponding parallelization type and number of GPUs. 

The distribution of normalized CPU load is visualized in the 

following figure. 
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Figure 2. Distribution of CPU Load 

 

This histogram displays the distribution of normalized 

average CPU usage values throughout the dataset. The 

horizontal axis represents the normalized CPU usage levels, 

while the vertical axis shows the number of samples falling 

within each interval. This visualization helps assess how 

CPU load is generally distributed across samples and 

whether the system experiences low or high workloads. The 

following figure reflects maximum CPU consumption over 

different time intervals. 

 

Figure 3. Visualization of Peak CPU Consumption 

 

The horizontal axis shows the normalized maximum CPU 

values, and the vertical axis shows the frequency of these 

values. This figure is particularly useful for identifying peak 

load points. The next figure presents an analysis of minimum 

CPU usage. 
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Figure 4. Minimum CPU Usage Analysis 

 

If minimum values are relatively high, it indicates 

continuous server activity. The figure shows the normalized 

cpu_min values along with their frequencies of occurrence. 

The following figure presents memory usage over the 

simulation period. The distribution of this data illustrates 

how algorithms perform under conditions of high or low 

memory availability. Hence, normalized memory usage and 

load frequency are observed. 

 

Figure 5. Memory Usage Distribution 

 

System latency is one of the most critical performance 

factors in LLMs. The following figure displays the 

distribution of normalized latency values. The x-axis 

represents latency (normalized), and the y-axis indicates the 

number of observations within each defined range. 
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Figure 6. Latency Distribution in the System 

 

The next figure illustrates system power consumption. 

Lower power usage indicates better energy efficiency. The 

chart analyzes power values based on their normalized levels 

and frequencies. 

 

Figure 7. Power Consumption Distribution 

 

The final figure in this series depicts network traffic. A 

higher data transmission rate can enhance parallelization 

performance. This chart helps identify which intervals 

exhibit higher bandwidth consumption. 
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Figure 8. Network Traffic Analysis 

 

The following bar chart shows the final output of the Q-

Learning algorithm concerning the number of GPUs selected 

per state. The x-axis displays state indices from 1 to 10, 

while the y-axis shows the number of GPUs allocated in each 

state. The algorithm attempts to allocate GPU resources 

optimally in each situation. 

 

Figure 9. Number of GPUs Selected per State 

 

This comparative bar chart evaluates three algorithms in 

terms of Accuracy, Precision, and F1-Score. The x-axis lists 

the algorithm names, and the y-axis displays each metric’s 

value (ranging from 0 to 1). The chart reveals that Q-

Learning performs better than the other algorithms in terms 

of decision-making accuracy and quality. 

Finally, the simulation results are presented, including a 

numerical comparison of algorithms and a scientific 

conclusion regarding the superior performance of the Q-

Learning algorithm relative to other methods. 

To this end, two additional models—SARSA and Fixed 

Policy—were considered. One represents a learning 

algorithm with an introspective tendency (see APA-style 

references [20,21]), while the other is a non-learning 

baseline model {refer to source [22]}. These methods are 

evaluated through comparative analysis. All algorithms were 

executed in a simulated environment using real Azure data, 

incorporating features such as CPU Average, Memory, 

Latency, Power, and Network Bandwidth. 

The Q-value update equation used is: 
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Q(s_{t+1}, a_t) ← Q(s_{t+1}, a_t) + α [r_t + γ * max_a 

Q(s_{t+1}, a_t) - Q(s_{t+1}, a_t)] 

Where α is the learning rate, γ is the discount factor, and 

r_t is the reward received after performing action a_t in state 

s_t. Q(s_{t+1}, a_t) denotes the current Q-value for the 

state-action pair. 

In the SARSA algorithm, the Q-value is updated based on 

the actual next action selected by the current policy, rather 

than the maximum, following the SARSA update equation: 

Q(s_t, a_t) ← Q(s_t, a_t) + α [r_t + γ * Q(s_{t+1}, 

a_{t+1}) - Q(s_t, a_t)] 

Here, SARSA uses Q(s_{t+1}, a_{t+1}), where the next 

action is selected by the algorithm itself. 

In contrast, the Fixed Policy model involves no learning. 

It uses a static decision table based on thresholds. For 

example: 

If avgCpu > 0.7 ⇒ assign GPU4 with Hybrid Parallelism 

These actions are predefined and independent of system 

experience, lacking adaptability. 

To evaluate resource allocation performance, a multi-

objective reward function is employed: 

R = 0.5 * Bandwidth + 0.4 * (1 - Power) + 0.3 * (1 - 

Latency) + 0.2 * (1 - Memory) + 0.1 * (1 - CPU) 

Each feature is normalized and either equally or 

adaptively weighted, depending on emphasis—for example, 

on latency or energy. 

The following grouped bar chart compares classification 

metrics for each algorithm, with the horizontal axis 

displaying the algorithms (Q-Learning, SARSA, and Fixed 

Policy), and the vertical axis representing values from 0 to 1 

for the key performance metrics: Accuracy, Precision, and 

F1-Score. 

 

Figure 10. Evaluation Metrics and Algorithm Classification Comparison 

 

The purpose of this chart is to compare the decision-

making quality of each algorithm in resource allocation. Q-

Learning typically outperforms in all three metrics, 

indicating better learning capability and more accurate 

decision-making than its counterparts. 

Another evaluation focused on latency and energy 

efficiency is illustrated in the bar chart below. The horizontal 

axis lists the algorithms, and the vertical axis shows 

Efficiency values ranging from 0.5 to 1. 
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Figure 11. Latency and Energy Efficiency 

 

This chart assesses the algorithms' ability to optimize 

energy consumption and reduce response delay—critical 

aspects in cloud-based LLM processing. 

Additional analysis was performed using confusion 

matrices, shown in the next figure. 

 

Figure 12. Confusion Matrices of the Algorithms 

 

The chart includes three panels, each representing one 

algorithm. The horizontal axis indicates predicted values 

(positive and negative), and the vertical axis shows actual 

values. The color intensity of each cell reflects the frequency 

of each classification outcome (True Positive, False 

Negative, etc.). Algorithms with the most observations along 

the matrix’s main diagonal (TP and TN) demonstrate higher 

accuracy. 

A simulated ROC curve is also provided for each 

algorithm to show performance trends. 
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Figure 13. ROC Curves of Algorithm Performance 

 

This figure includes three ROC curves comparing the 

algorithms. The x-axis represents the False Positive Rate 

(FPR), and the y-axis shows the True Positive Rate (TPR). 

Curves closer to the top-left corner indicate better 

performance. Q-Learning demonstrated a higher ability to 

distinguish between correct and incorrect classes, indicating 

a higher true positive rate and lower error rate. 

Finally, the numerical results and algorithm comparisons 

under various conditions are summarized in the following 

table: 

Table 1. Evaluation and Comparison of Methods 

Algorithm Accuracy Precision Recall F1-Score Mean Reward 

Q-Learning 0.89 0.87 0.88 0.875 0.84 

SARSA 0.82 0.79 0.81 0.80 0.76 

Fixed Policy 0.68 0.65 0.66 0.655 0.62 

 

Based on the results, Q-Learning exhibited the best 

performance across all evaluation dimensions. Therefore, in 

the context of adaptive optimization of resource allocation 

for parallel processing, reinforcement learning algorithms—

especially Q-Learning—can be considered highly effective. 

4. Discussion and Conclusion 

The results of the current study offer compelling evidence 

supporting the efficacy of reinforcement learning (RL)—

particularly Q-Learning—for adaptive resource allocation in 

the parallel processing of large language models (LLMs). 

The empirical evaluation demonstrated that the Q-Learning 

algorithm outperformed both SARSA and Fixed-Policy 

approaches across multiple performance dimensions, 

including accuracy (0.89), precision (0.87), recall (0.88), F1-

score (0.875), and average reward (0.84). In contrast, 

SARSA showed moderate effectiveness (accuracy = 0.82, 

average reward = 0.76), while the Fixed-Policy approach 

lagged significantly behind (accuracy = 0.68, average 

reward = 0.62). These findings suggest that Q-Learning 

offers more accurate, stable, and context-aware resource 

scheduling under dynamic conditions, which are 

characteristic of distributed LLM environments. 

The superiority of Q-Learning can be attributed to its 

optimal policy convergence capabilities in non-deterministic 

and complex state spaces. This aligns with the results of 

prior studies emphasizing the flexibility and decision-quality 

of value-based RL methods in cloud and edge computing 

settings [3, 8]. The adaptive nature of Q-Learning allows it 

to explore and exploit the environment efficiently, leading to 

better cumulative reward maximization across varying 

scenarios. This performance advantage is further evidenced 

by the ROC curve comparisons, where Q-Learning exhibited 
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higher true positive rates and lower false positive rates, 

indicating improved classification fidelity in resource 

decision outcomes. 

Moreover, the confusion matrix analyses revealed that Q-

Learning had the highest concentration of correct 

classifications (true positives and true negatives) along the 

matrix diagonal, compared to SARSA and Fixed-Policy. 

This implies a stronger ability to correctly identify optimal 

actions under different resource load conditions, such as 

memory utilization, latency, and GPU workload. These 

results support the utility of RL frameworks in high-

variability environments like cloud-based LLM 

deployments, where static policies often fail to respond to 

dynamic system states effectively [2, 4]. 

In terms of energy efficiency and latency—critical 

performance factors for scalable LLM processing—Q-

Learning again proved superior. The bar chart in Figure 11 

indicated that Q-Learning consistently achieved lower 

latency and better energy profiles than its counterparts. 

These findings are consistent with the literature on RL-

driven system optimization. For example, studies by Patel 

and Sharma [6] and Kim and Lee [5] show that RL 

algorithms can outperform rule-based systems in 

maintaining efficiency under dynamic workloads by 

continuously adjusting resource parameters based on real-

time feedback. Similarly, Sun [10] demonstrated the benefits 

of dynamic batch size adjustment via RL to reduce latency 

and enhance throughput, corroborating the current study’s 

findings on the effectiveness of dynamic policy learning. 

The multi-objective reward function used in this study—

incorporating bandwidth, power, memory, CPU load, and 

latency—was instrumental in guiding the RL agent’s 

learning toward balanced resource optimization. This is in 

line with prior frameworks that integrate normalized and 

weighted metrics to facilitate nuanced decision-making [7, 

9]. Adaptive weighting of performance indicators enables 

the system to prioritize different objectives based on context 

(e.g., reducing latency in real-time applications or 

conserving energy in mobile deployments), enhancing the 

overall responsiveness and intelligence of the resource 

manager. 

The SARSA algorithm, while moderately effective, 

underperformed compared to Q-Learning, likely due to its 

on-policy nature. SARSA’s reliance on the action actually 

taken—as opposed to the maximum future Q-value—limits 

its exploration and may result in suboptimal convergence in 

complex and rapidly changing environments [11]. However, 

SARSA’s smoother learning curve and safer policy 

evaluations may make it suitable for systems with tighter 

safety constraints or limited variance in workloads. This 

echoes observations by Lee and Park [17], who emphasized 

the potential of on-policy methods in scenarios where 

predictability and policy safety are prioritized over 

aggressive optimization. 

In contrast, the Fixed-Policy model showed the weakest 

results, confirming the inadequacy of static decision tables 

for complex resource scheduling in LLM systems. Static 

approaches cannot generalize beyond predefined thresholds 

and offer no learning capability to adapt to changing input 

distributions or execution environments [2]. This result 

reinforces the consensus in recent literature that traditional 

resource allocation methods are insufficient for next-

generation AI workloads that demand real-time adaptivity 

[15, 18]. 

Furthermore, the integration of RL agents with simulation 

platforms such as MATLAB, PyTorch, and DeepSpeed for 

training and evaluation—as implemented in this study—

demonstrated practical viability and scalability of the 

proposed approach. This aligns with the system-level 

integration strategies discussed in the works of Narayanan et 

al. [16] and Shoeybi et al. [12], who showed that memory-

efficient training and pipeline parallelism can be 

significantly enhanced when paired with intelligent 

learning-based schedulers. Such integrations also support 

the growing need for runtime-aware and data-driven 

orchestration systems capable of adapting to fluctuations in 

workload intensity, node availability, and communication 

bandwidth [13, 14]. 

Importantly, the study's approach also reflects the broader 

shift toward hybrid action space handling in reinforcement 

learning—combining discrete decisions (e.g., GPU count, 

parallelism type) with continuous variables (e.g., memory 

allocations). The successful implementation of this hybrid 

approach echoes trends in recent RL research that emphasize 

mixed-action modeling for more expressive and context-

sensitive policy learning [4, 5]. These capabilities will be 

especially vital as LLMs expand into multi-tenant, 

serverless, and edge-based deployments, where the 

complexity and granularity of decision-making requirements 

increase substantially [11, 18]. 

Ultimately, this study affirms that reinforcement learning, 

and Q-Learning in particular, provides a high-utility 

framework for managing the trade-offs inherent in LLM 

parallel execution. By balancing multiple objectives and 

responding adaptively to real-time conditions, RL-enabled 

agents can improve decision precision, system throughput, 
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and energy efficiency, which are all critical to scalable LLM 

deployment across cloud and edge computing 

infrastructures. 

Despite the promising results, several limitations must be 

acknowledged. First, the simulation environment was based 

on synthetic and Azure VM data, which, although reflective 

of real-world conditions, may not capture all the variability 

and hardware heterogeneity present in production 

environments. Second, the study focused only on three 

algorithms—Q-Learning, SARSA, and Fixed-Policy—

excluding other advanced methods like PPO, DDPG, or 

multi-agent RL, which may yield further performance gains. 

Finally, reward function weightings were manually tuned 

and not adaptively learned, which could constrain 

generalizability across different system configurations. 

Future studies should investigate the integration of more 

advanced reinforcement learning algorithms, such as Soft 

Actor-Critic (SAC), Proximal Policy Optimization (PPO), 

and multi-agent systems, to further enhance policy 

robustness and convergence speed. Additionally, research 

could explore adaptive reward weighting mechanisms, 

potentially through meta-learning or evolutionary strategies, 

to allow RL agents to adjust optimization priorities 

autonomously. Cross-platform generalization using real-

time deployment on hybrid GPU clusters and edge devices 

would also add significant value and practical insight. 

From a practical standpoint, organizations deploying 

LLMs at scale should consider incorporating reinforcement 

learning-based resource managers into their orchestration 

layers. These agents can be pretrained in simulated 

environments and fine-tuned in production for continuous 

adaptation. Enterprises operating in latency-sensitive or 

cost-constrained domains—such as real-time chatbots, 

mobile NLP applications, or cloud inference platforms—

stand to benefit significantly from the adaptive and energy-

efficient behaviors facilitated by RL-based scheduling 

systems. Additionally, investing in infrastructure that 

supports hybrid action spaces and runtime telemetry 

collection is essential for enabling the full potential of 

learning-driven orchestration. 
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