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Abstract
This study introduces a novel multi-modal machine learning framework for high-frequency EURUSD trading that combines

regime-adaptive ensemble approaches with system dynamics features. We develop seven system dynamics features—
RiskIndex, CarryFlow, Capln, CapOut, FlowPressure, FairValue px, and Mispricing—that illustrate the small-scale
functioning of the market. Our RAGe-ENS (Regime-Adaptive Gradient Ensemble) approach adjusts the weights of
Transformer and XGBoost forecasts according on their ability to identify regimes and their agreement with actual results.
Utilizing 4-hour EURUSD data from 2012 to 2025 (20,119 observations), we examine many models over three time periods
(1, 3, and 6 periods). RAGe-ENS performs exceptionally well, according to the results, with Sharpe ratios of 2.91 (H=1),
1.41 (H=3), and 1.47 (H=6). Compared to the performance of individual models, this is far superior. The Sharpe ratios of
H=1 and H=3 increase by 19.4%, 88.6%, and 6%, respectively, depending on the system dynamics aspects. The framework
produces alpha in high-frequency currency markets, as evidenced by its high PSR values and significant statistical
significance.
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1. Introduction random walk criterion, especially in short-term intervals [3].

This empirical difficulty highlights the necessity for

The foreign currency (FX) market is the largest and most sophisticated approaches capable of capturing intricate

dynamic financial market globally. It transacts over $7 processes.

trillion daily, significantly surpassing the stock and bond Recent advancements in machine learning (ML) and deep

markets [1]. Foreign exchange prediction remains a learning (DL) have yielded promising answers. Attention-

significant challenge as it influences global trade, based LSTM [4] and Transformer topologies using temporal

investment, and monetary policy. Fluctuations in foreign embeddings [5] have demonstrated superior predictive

exchange rates directly influence a nation's competitiveness, accuracy compared to statistical models, particularly for

the volume of capital inflows and outflows, and the valuation high-frequency foreign exchange data. These models may

of its assets [2]. identify nonlinear dependencies, retain information over

It is widely acknowledged that predicting exchange rates extended periods, and utilize sequential patterns in noisy

is challenging due to the market's inherent instability, time series data.  Moreover, hybrid frameworks that

nonlinearity, non-stationarity, and propensity for regime integrate machine learning with fundamental and technical

shifts. Conventional econometric models, including
ARIMA, GARCH, and VAR, frequently do not surpass the

indicators or combine decomposition with neural networks
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[6] have shown substantial improvements in predicting
performance.

However, there are still issues that require attention.
Many machine learning models face overfitting issues, lack
interpretability, and show limited resilience in real-world
trading scenarios [2]. Additionally, static ensemble
approaches are not effective in live trading settings due to
their inability to adjust to rapidly shifting market conditions
[7]. This disparity has led to increased interest in regime-
sensitive ensembles and the incorporation of system
dynamics characteristics, such as capital flows,
macroeconomic hazards, and mispricing feedback loops,
that capture structural interactions [8].
In this paper, a regime-adaptive ensemble (RAGe-ENS)
technique is combined with system dynamics features to
provide a multi-modal machine learning framework for
high-frequency EUR/USD trading. We assess the accuracy
of our forecasts across a range of time periods and
transaction costs using 4-hour EUR/USD data from 2012 to
2025. Three significant contributions are made by this study:

o Theoretical: Demonstrating the integration of
system dynamics concepts with ML forecasting,
providing a richer understanding of market
microstructure.

e  Methodological: Developing a regime-adaptive
ensemble framework that dynamically weights

(XGBoost

according to market regimes.

base models and Transformer)
e Practical: Showing statistically significant and
highlighting  the
applicability of the framework in institutional high-

cost-robust  profitability,

frequency trading.

2.  Literature Review
2.1.  Importance of FX Prediction

The foreign currency (FX) market, or Over-the-Counter
(OTC) market, is the largest financial market globally. It
differs from other markets, such as the stock market, due to
its significant leverage and lack of centralization [9, 10].
Forecasting foreign exchange rates is a significant financial
challenge crucial to worldwide investments and global
commerce. Variations in these rates influence the prices of
products and services that are exchanged [11].

2.2.  Historical Difficulties and Forecasting Challenges

The foreign exchange market is intricate due to its
volatility, nonlinearity, non-stationarity, and chaotic nature
[12]. The currency market has grown increasingly complex
since the Bretton Woods system was supplanted by the free-
floating system in 1971 [13]. The noisy and tumultuous
environment significantly complicates the forecasting of
short-term trends [14]. Historically, empirical evidence
frequently failed to support conventional forecasting
models, rendering the Random Walk model a formidable
benchmark [15].

2.3.  Motivation for Modern ML Approaches

Due to the limitations of classic statistical methods, which
struggle with stringent distribution assumptions and the
identification of non-linear and non-stationary patterns [16],
the utilization of modern Machine Learning (ML) and Deep
Learning (DL) techniques is imperative [1]. These models
excel at replicating the non-linear and non-stationary
features inherent to exchange rates [16].

2.4.  Traditional Econometric Approaches

2.4.1.  Structural Models (PPP, UIP, Taylor rule,
Monetary Models)

Conventional financial analysis relies on structural
models derived from financial theory. The Uncovered
Interest Rate Parity (UIRP) is a fundamental idea that
elucidates the impact of interest rate differentials between
two nations on their exchange rates [17].

2.4.2. Time-Series Models (ARIMA, GARCH, VAR,
VECM)

Statistical ~ techniques, including  Autoregressive
Integrated Moving Average (ARIMA) and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
models, are commonly employed for forecasting exchange
rates [18]. GARCH models are primarily employed for
forecasting foreign exchange volatility, often capturing
characteristics such as volatility clustering and [11].

Statistical methods frequently yield disappointing results
because of their insufficient ability to clarify the complex
relationships present in non-linear and non-stationary data
[16]. Empirical evaluations regularly show that deep
learning methods, such as LSTM, provide significantly
lower Root Mean Square Error (RMSE) than traditional
ARIMA models in time series forecasting [19].
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2.5.  Technical vs. Fundamental Paradigms

Many individuals employ Technical Analysis (TA) to
forecast the foreign exchange market utilizing historical data
[20]. This is due to the assumption in technical analysis that
historical price patterns will recur. Technical indicators are
mathematical formulas that utilize historical data on price,
volume, or open interest [4]. These indicators assist in
identifying patterns, trends, momentum, volatility, trend
strength, and market cycles [4]. The Relative Strength Index
(RSI), Moving Average Convergence Divergence (MACD),
and other forms of Moving Averages (SMA, EMA)
indicators [21].

Fundamental Analysis (FA) considers macroeconomic,

exemplify technical
political, and social issues that influence the market [22].
Central bank interest rates, inflation rates, GDP growth, and
trade balances are essential determinants as they influence
public expectations regarding the economy [4]. Text mining
methodologies are commonly utilized to examine news and
extract trading principles from basic data, which is otherwise
inadequately documented in the literature [23]. Market
sentiment, derived from news stories, forecasts, and social
media discussions, is employed to assess market confidence
[4].

The Efficient Market Hypothesis (EMH), in its weak
form, asserts that technical methods should not yield gains
above those of passive investments (Malkiel & Fama, 1970).
Empirical research regularly shows that technical trading
tactics can yield gains in foreign exchange trading [24].
However, some evaluations suggest that the effectiveness of
conventional technical solutions has diminished recently
[25].

2.6.  Machine Learning in FX

2.6.1.  Early ML Applications (ANN, SVM, Tree-Based
Models: RF, XGBoost)

Utilizing machine learning to model non-linear and non-
stationary exchange rate data is an appropriate application
[16]. Due to their enhanced data fitting skills, Artificial
Neural Networks (ANNs) have surpassed linear statistical
methods [1]. Artificial neural networks trained using
backpropagation may become ensnared in local minima,
hence constraining their generalization capabilities [26]. The
challenge is particularly pronounced in financial markets,
where optimization landscapes often exhibit noise and lack
convexity, leading to suboptimal convergence points.

Support Vector Machines (SVMs) and Support Vector
Regression (SVR) may effectively learn exchange rate time
series, demonstrating low generalization error [27]. The
reconstruction of the concealed phase space of currency
dynamics has markedly diminished forecast errors in recent
implementations of chaos-based Support Vector Regression
(SVR) [28].

Tree-based models, like Random Forest (RF) [29] and
Extreme Gradient Boosting (XGBoost) [30], are preferred
for foreign currency forecasting due to their robustness,
interpretability, and capacity to manage high-dimensional
data [13]. Machine learning models are often integrated with
various models in foreign exchange research, including
Ridge Regression, K-Nearest Neighbors (KNN), Random
Forest (RF), XGBoost, Gradient Boosting Decision Trees
(GBDT), Attificial Neural Networks (ANN), Long Short-
Term Memory (LSTM), and Gated Recurrent Units (GRU).
hybrid
applications for these model [31].

Ensemble or configurations are prevalent

2.6.2.  Feature Selection and Interpretability

The performance of a predictive model hinges on the
inclusion of relevant features; however, using too many
features can worsen performance due to noisy variables or
collinearity [32]. Feature selection aims to improve
prediction speed, ease the interpretation of predictors, and
enhance performance by eliminating noisy features [33]. The
goal is often to develop models that are parsimonious,
interpretable, and accurate [34].

+ Simple linear models, such as those based on Linear
Discriminant Analysis (LDA), have been shown to achieve
exceptionally high classification accuracy (up to 98.77%
out-of-sample for EUR/USD directional movement) while
maintaining interpretability, often surpassing more complex
models like LSTM and Deep Reinforcement Learning
(DRL) [34].

2.7.  Deep Learning Architectures

2.7.1.  RNN, LSTM, GRU and Variants

According to the algorithmic trading literature [10],
neural network methods (ANN, LSTM, GRU) outperform
other machine learning models. This supremacy arises from
their ability to leverage several parameters (weight, bias,
number of layers, and units), facilitated by modern
computational resources [13].
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e  Recurrent Neural Networks (RNNs) are suitable for
sequential data but encounter the vanishing
gradient issue over time [35].

e Hochreiter and Schmidhuber in 1997 introduced
Long Short-Term Memory (LSTM) networks to
address the vanishing gradient issue inherent in
RNNs [13].

e  Various LSTM variants, such as Stacked-LSTM
[34] and Bidirectional LSTM [16], are examined to
enhance performance.

2.7.2.  Transformers and Attention-Based Models (BERT,
Hybrid Transformers)

The self-attention mechanism, derived from the
Transformer model [36], is significant since it enables
models to learn and retain associations between non-
adjacent data items. This addresses the issue of information
BERT

(Bidirectional Encoder Representations from Transformers)

loss in lengthy consecutive inputs [37].

is a prominent architecture that employs this method.
Initially deigned for natural language processing, it has been
adapted to handle time series data due to its capability to
utilize information from both preceding and subsequent
timestamps [37].

Hybrid deep
investigated to enhance predicting accuracy. Autoencoder-

learning  architectures have been
LSTM models have been proposed for forecasting FX
volatility. The autoencoder functions similarly to principal
component analysis by autonomously extracting minimal
feature representations from input data [11]. Additionally,
decomposition-based hybrid models, such the combination
of Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and LSTM, are utilized to
address the inherent non-linearity and non-stationarity in
Forex time series [38]. The Multi-Modal Cross Attention
Network (MCASP) is a sophisticated architecture that
employs a unified deep learning framework to model
associations both inside the same type of data (intra-modal)
and across different types of data (inter-modal). Thus, it can
encapsulate the cumulative impact of several input streams
[31].
Concurrently,  ensemble and  regime-sensitive
approaches are increasingly employed to improve model
robustness and flexibility.  Ensemble learning, through
methods like as bagging, boosting, and stacking, integrates
many base learners to improve predictive accuracy and

generalization robustness [16]. Stacking is a sophisticated

ensemble method that has been effectively utilized by
combining Random Forest and Support Vector Regression
(SVR) models for multi-horizon exchange rate forecasting
[28]. A separate study proposed a hybrid ensemble model
that combines multi-class SVM (EmcSVM) with fuzzy logic
(NSGA-II), functioning as a trading filter that permits buy or
sell transactions exclusively when the projected market trend
is recognized as either an uptrend or a downtrend [20].
Ensemble approaches that respond to regime changes
frequently employ adaptive weighting and model swapping.
These multi-model frameworks are predicated on the notion
that the Forex market comprises many trading methods and
behavioral regimes. They contend that even basic models
can provide profits during specific market phases if tailored
for particular currency pairs [7]. Adaptive solutions, such
as the "leader correction approach," enable the selection of
the model that generated the highest profit during the latest
evaluation period [7]. This strategy is purportedly capable
of effectively managing the hazards of overfitting using a
concept termed "positive overfitting," indicating that short-
term model specialization can yield beneficial and lucrative

predictions in rapidly changing contexts [7].
2.8.  Feature Engineering and Multi-Modal Data

Technical indicators are crucial due to their extensive
utilization as input aspects. They assess factors such as
volatility, trend, and momentum [4]. Recent studies
demonstrate that models are increasingly integrating
macroeconomic factors alongside technological data [39].
Interest rates, inflation rates, GDP growth, and employment
statistics are among the most significant variables [4].
Investigations have begun investigating the predicted impact
of environmental variables—such as CO: levels—and
commodity prices, especially Brent crude oil, on currency
rates like EUR/USD [9]. The Elliott Wave Theory has been
adapted to identify event-driven features that aid in the
selection of training data by determining critical entrance
and exit points [40]. Alternative data sources—such as
market sentiment extracted from corporate news,
governmental policy declarations [41], and financial news
headlines [6]—are increasingly recognized as methods to
assess the general disposition of market participants [4]. The
use of textual data from social media and business financial
reports is recognized as a crucial future direction [32].

Multi-modal models (dual-input or fusion models)
integrate and analyze many data types (such as historical
prices, news text, and technical indicators) into a unified
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framework [31]. BERTFOREX is a cascade aggregation
model that utilizes patterns extracted by BERT from
fundamental data as weights on technical indicator features
to emulate trader behavior [37]. A recent dual-input LSTM
design employing both technical and fundamental data in
parallel streams to forecast EUR/USD closing values
exemplifies this approach. The dual-input model exhibited
a 24-29% reduction in MAE/RMSE compared to single-
input baselines [39].

2.8.1.  Overfitting Risks and Prevention (Regularization,
Walk-Forward Validation)

The crucial issue of overfitting occurs when a trading
system adjusts too closely to past data, rendering it
unsuccessful in the future [7]. Rolling walk-forward
optimization is an established method to improve model
resilience and mitigate overfitting in dynamic financial time
series. Regularization strategies are crucial for mitigation
[13].

2.8.2.  Realistic Backtesting (Transaction Costs,
Liquidity, Capital Constraints)

A persistent gap in the literature is the failure to account
for real-world trading factors .To obtain reliable, profitable
results, a realistic backtesting process must incorporate
factors such as spread, slippage, and transaction costs [7].
Evaluating trading systems across three possible signal
scenarios (buy and sell, only buy, and only sell) is also

necessary to reduce the effect of survivorship bias [13].

2.8.3.  Evaluation Metrics

Three primary categories of evaluation criteria utilized
for forecasting exchange rates and trading strategies are
The Sharpe
Ratio (SR) and its annualized variant (ASR) are frequently

economic, statistical, and robustness-based.

employed to assess the risk-adjusted returns of a forecasting
or trading strategy from an economic perspective. These
figures illustrate the additional return obtained for each unit
of risk incurred. A limitation of the Sharpe Ratio is its equal
treatment of both upside and downside volatility.
Consequently, modern research often promotes the Sortino
Ratio, which solely identifies and penalizes downside risk,
thereby offering a more precise depiction of risk in
investment performance [13].

Various error measures are employed to assess the
accuracy of prediction models, particularly in regression
tasks. Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and Root Mean Square Error
(RMSE) are among these metrics. They assess the deviation
of projected values from actual observed outcomes. These
metrics are particularly useful for assessing the precision of
short-term forecasts and are frequently employed in machine
learning and time-series forecasting studies [1].

Robustness tests are designed to determine whether the
performance discrepancies between models are statistically
significant or merely random variation. The Diebold—
Mariano test is a prevalent method for directly comparing
the accuracy of forecasts from two competing models, under
the null hypothesis that their predictive powers are
equivalent. In addition to the Diebold—Mariano test, other
statistical approaches, such as the independent t-test and
bootstrapping techniques, are employed, especially in
finance research where the assumptions of normality and
independence may not always hold [13].

2.9.  Identified Gaps in the Literature

2.9.1.  Lack of High-Frequency, Long-Horizon FX
Studies

There is a lack of progress in developing high-frequency
foreign currency prediction models (such as hourly
forecasts) that can handle chaotic and noisy time series and
the immediate impacts of outside factors [37]. High-

frequency environments are still quite challenging [4].

2.9.2.  Static Ensembles vs. Adaptive Frameworks

Many ensemble models rely on basic averaging or static
combinations [37]. he "leader correction approach" alone is
insufficient; we require more sophisticated, adaptable
frameworks that can continue to optimize as market

conditions change [7].

2.9.3.  Limited Integration of System Dynamics into ML

The unrealistic assumption of constant volatility in
directional prediction models is often ignored in favor of
technical analysis in research [42]. To strengthen model
robustness, future studies should concentrate on measuring
and methodically incorporating additional system dynamics,
such as macroeconomic factors, political environments,
central bank actions, market mood, and risk tolerance [1].
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2.9.4.  Insufficient Evaluation under Realistic Trading
Conditions

One prevalent issue is that while backtesting, research
don't always account for real-world variables like
spread, slippage, and transaction costs. Accordingly,
even very precise forecasts may not turn a profit in the
real world [7]. Thorough testing under actual trading
settings is a crucial area that still requires

improvement.Research
3.1.  Dataset and Experimental Framework
3.1.1.  Data Source and Temporal Coverage:

This study uses a large dataset of 4-hour EURUSD price
data with 20,119 observations from September 6, 2012, to
August 19, 2025. The dataset, which covers significant
market events like the European debt crisis, Brexit, the
COVID-19 pandemic, and numerous central bank policy
changes, is among the most comprehensive high-frequency
currency trading datasets in academic literature. For
complex machine learning models, the temporal resolution
of 4-hour intervals offers the best trade-off between
intraday  fluctuations  and

capturing preserving

computational tractability.

3.1.2.  Data Quality and Preprocessing:

With 96.57% of observations taking place at precise 4-
hour intervals, the dataset exhibits remarkable temporal
consistency, guaranteeing accurate time-series analysis.
Time zone-related artifacts are eliminated by standardizing
all timestamps to UTC. Comprehensive missing value
analysis is part of the preprocessing pipeline, and key
columns exhibit low rates of missing data (usually less than
5% for core characteristics). In order to preserve temporal
causality and prevent look-ahead bias in feature

development, forward-fill techniques are used cautiously.

3.1.3.  Feature Engineering Architecture:

The study used a complex multi-layered feature
engineering framework consisting of 64 features categorized
into seven unique groups, each aimed at capturing various
facets of market dynamics:

Price and Technical Analysis Features (17 features): This
category includes conventional technical indicators such as
EURUSD OHLC prices, logarithmic returns, simple and
exponential moving averages (SMA 5, SMA 20, EMA 12,
EMA 26), MACD and its signal lines, Bollinger Bands

(upper, middle, lower), RSI 14, ATR 14, and 24-hour
volatility metrics. These aspects establish the groundwork
for forecasts based on technical analysis and act as baseline
elements for comparison with more advanced
methodologies.

Macroeconomic and Risk Features (10 features): This
category encompasses worldwide market sentiment and risk
determinants, including the Dollar Index (DXY), VIX
volatility index, precious metals (XAUUSD, XAGUSD),
energy commodities (UKOIL), and principal equity indexes
(NDX, SPX, DJI, SX5SE, COPPER). These attributes are
essential for identifying regime shifts and systemic risk
elements that affect currency markets.

Interest Rate and Yield Features (6 features): This
category encompasses EUR and USD overnight rates, 2-year
government bond yields (DE02Y, US02Y), interest rate
differentials, and yield spreads. These aspects encapsulate
carry trade dynamics and monetary policy anticipations that
substantially affect currency fluctuations.

Cross-Currency Features (6 features): This category
encompasses primary currency pairs (AUDUSD, GBPUSD,
NZDUSD, USDCAD, USDCHF, USDJPY) to analyze
relative strength patterns and identify cross-currency
arbitrage opportunities.

Event Timing Features (24 features): This category
encompasses the temporal proximity to significant economic
releases such as CPI, GDP, employment data, and central
bank meetings for both the EU and US economies. Features
encompass the duration since the last release, the interval till
the next release, and binary indicators for recent releases,
facilitating the models' adaptation to news-driven market
fluctuations.

Calendar and Temporal Features (7 features): This
category encompasses hour-of-day and day-of-week with
cyclic encoding (sin/cos transformations), as well as holiday
indicators to capture intraday and seasonal patterns in
currency markets.

System Dynamics Features (seven features): This
innovative category constitutes the primary contribution of
this research, encapsulating market microstructure dynamics
via advanced mathematical models.

3.2 System Dynamics Feature Construction

The system dynamics characteristics are based on control
theory and dynamical systems theory, regarding financial
markets as complex adaptive systems with numerous
interacting state variables. These qualities elucidate the
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fundamental causes influencing price fluctuations beyond
conventional technical indications.

3.3, RiskIndex - Multi-Factor Risk Aggregation:

The RiskIndex represents a comprehensive measure of
market stress by aggregating multiple risk factors using
rolling z-score normalization:

1 - —
RiskIndex; = 2(VIXy) + 2(DXY) = 2(XAUUSDy) ]

z(UKOIL,)
Where the rolling z-score is defined as:
Xt — He
2(x) = o +e

with p; and o; computed over a 240-period rolling
window (approximately 40 trading days) with a minimum of
60 observations. The negative signs for gold and oil reflect
their inverse relationship with risk sentiment - higher
gold and oil prices typically indicate increased market stress.
The RiskIndex provides a normalized measure of market
stress that adapts to changing volatility regimes.

3.4.  CarryFlow - Interest Rate Differential Dynamics:

The CarryFlow feature captures the dynamic evolution of
interest rate differentials, which drive capital flows in
currency markets:

CarryFlow, = MAshort(Spreadt) - MAlong(Spreadt)

Where MAshort and MAlong represent 72-period (12
days) and 240-period (40 days) moving averages
respectively. The CarryFlow feature captures the momentum
in interest rate differentials, providing early signals of capital
flow changes that precede currency movements.

3.5.  State Variables - Leaky Integrator Models:

The state variables represent the accumulation of market
forces over time using leaky integrator dynamics:

Capln, = (1 — 8.) X Capln,_, + g. X CarryFlow,
CapOut, = (1 — &;) X CapOut,_, + g, X (—RiskIndex,)
FlowPressure; = Capln_ — CapOut,

Where 8. = &, = 0.005 represents the decay rate (half-
life = 139 periods), and g. = g, = 1.0 represents the gain
factors. Capln represents the accumulation of positive carry
flows, while CapOut represents the accumulation of
risk factors. FlowPressure represents the net pressure from
capital flows, providing a comprehensive measure of market

dynamics.

3.6.  Fair Value Estimation - Rolling Causal Beta:

The Fair Value feature provides a dynamic fundamental
valuation based on rolling regression analysis:

Cov(Xj, Ye)
e Var(Xj‘t)
FVy = Z Bj X (Xj,t - Hj,t) + Uy
j (1)
Mispricing, = Price; — FVy

The regression uses DXY, yield spl(%gds, and RiskIndex
as explanatory variables with a 240-period rolling window.
The Mispricing feature captures deviations
from fundamental value, providing contrarian signals during
market dislocations.

o Machine Learning Model Architectures

XGBoost Settings: The XGBoost implementation
employs gradient boosting with hyperparameters
meticulously optimized for financial time series analysis.
The parameters consist of max depth=6 to prevent
overfitting, n_estimators=500 to enhance model complexity,
and learning_rate=0.05 to ensure steady convergence. The
subsampling parameters (subsample=0.8,
colsample bytree=0.8) introduce regularization, while
random_state=123 ensures reproducibility of results. The
model employs RMSE as the evaluation metric, which is
effective for regression tasks in financial predictions.

The Transformer implementation employs a multi-head
attention mechanism including four attention heads and four
levels. This enables it to identify patterns in a highly
The model features a 128-

dimensional embedding space and employs a dropout rate of

sophisticated manner.

0.30 for regularization purposes. The architecture employs
sinusoidal positional encoding and Rotary Position
Embedding (RoPE) to enhance tempgrpl comprehension.
The output layer generates 3D predicti?@)s for multi-horizon
forecasting (1, 3, and 6 periods), enabling the model to
concurrently learn horizon-specific patterns.

Configuration of LSTM: The LSTM configuration
comprises two layers and 192 hidden units. It can
The model

incorporates an input mixing layer (256 — feature dim with

comprehensively identify trends over time.

GELU activation) that modifies the features prior to their
processing by the LSTM. The model's bidirectional
architecture enables it to capture both forward and backward
temporal dependencies, which is crucial for evaluating

financial time
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3.7. RAGe-ENS Framework - Regime-Adaptive Gradient
Ensemble

Theoretical Justification: The RAGe-ENS framework
addresses the primary challenge of ensemble methods in
financial markets: their necessity to adapt to market
fluctuations. Conventional ensemble methods employ static
weighting systems that fail to consider the temporal
fluctuations of financial markets. Various models may
perform more effectively under distinct market conditions.
Dynamic Weighting Framework: The primary innovation of
RAGe-ENS is its dynamic weighting mechanism predicated
on correlations:

max (O,COI‘I'(y/x;b’ YIrue)) )

COITyop, + COITy + €

Wxgb =

Wir = 1 — Wiy, subject 1o Wy, = Winin xop (10)
= 0,65

This weighting strategy guarantees that models exhibiting
a higher correlation to actual returns are assigned greater
weight, while also preserving a minimum weight for the
XGBoost model to ensure stability. The correlation is
calculated using rolling windows to accommodate
fluctuating market conditions.

Algorithm for Regime Detection:The regime detection
mechanism employs the intensity of Transformer forecasts
as an indicator of market volatility and trend robustness.

regime_mag, = |V (11)
regime_ema, = a X regime_mag, (12)
+ (1 — «) X regime_ema,_,
regime scale = 1 + REGIME GAIN (13)
X (mean(regime ema)
—0.5) x2.0

Where o = 0.15 represents the smoothing parameter. The
regime detection identifies periods of high volatility and
strong trends, enabling adaptive model weighting. Adaptive
Thresholding System:The thresholding system adapts to
market regimes by adjusting the signal generation
thresholds:

Qaqj = clip(mean(regime_ema) (14)
—0.5,—0.5,0.5) x 0.06
Quse = C]ip(qfold + qadj' 075;090) (15)

This system reduces thresholds during high-volatility
periods (more signals) and increases thresholds during low-
volatility periods (fewer, higher-quality signals).

Signal Generation and Position Sizing:The final signal

generation combines ensemble  predictions  with
adaptive thresholding:
Sens = xgb X Z(y/x;b) + Wyr X Z(}Tt;f) (16)
v = NU_FACTOR X MAD(ss) an
sig, = +1if Sepee 2 v, else sig,. = —1 if sepq¢ (18)

< —v, else sigt =0
The neutral band (v) is determined by the median absolute
deviation (MAD) of ensemble scores, providing adaptive
thresholding based on signal strength distribution.

3.8.  Comprehensive Evaluation Framework
3.8.1.  Walk-Forward Validation Protocol:

The assessment utilizes a stringent walk-forward
validation framework with 42 folds, each consisting of 24
months of training data, 3 months of validation data, and 3
months of testing data. A one-month embargo period
between folds mitigates data leakage and guarantees
authentic trading circumstances. This technique ensures
rigorous out-of-sample assessment while preserving
adequate data for model training.

3.8.2.  Performance Metrics and Statistical Analysis:

The evaluation framework comprises a comprehensive
array of performance metrics:
Returns Adjusted for Risk: The Sharpe ratio and Sortino
ratio are two metrics for assessing performance while
considering risk. Every horizon possesses distinct

annualization factors.

Sharpe = et X VAnn (19)
Gnet
Sortino = et X VAnn (20)
Odownside
6
Anny = max <1'H> X 252 @h

Hit Rate Analysis: The proportion of profitable trades
provides insight into the efficacy and reliability of the
signals.

Maximum drawdown analysis provides critical insights
for risk management, while exposure analysis ensures that
position sizes are feasible.

Modeling Transaction Costs: An exhaustive examination
of transaction costs ranging from 0.5 to 3.0 pips,
encompassing bid-ask spreads, market effect, and timing
costs:

TC, = turns, X (cost pips X 10™%) (22)
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turns, = |sign(sigt) - sign(sigt_1)| (23)
net; = sig, X Yiner — TC; (24)
Statistical Significance Testing: The Probabilistic Sharpe
Ratio (PSR) and the Deflated Sharpe Ratio (DSR) are
employed to assess statistical significance, ensuring that
performance enhancements are not attributable to random
variation. Establishing the Target Variables: The target
variables are derived by calculating the logarithmic returns
over the specified time intervals:
Priceqyp (25)
Yregh = log( Price, )
For horizons h € [1, 3, 6] representing 4, 12, and 24-hour

predictions. This construction ensures stationarity

and enables direct comparison across different horizons.

3.8.3.  Experimental Design and Robustness Testing

The empirical design of this study is grounded in a
comprehensive and multifaceted framework for evaluating
models. In the preliminary stage, various models, including
XGBoost, Transformer, and LSTM, are examined separately
The study

introduces the Regime-Adaptive Gradient Ensemble

to establish baseline predictive performance.

(RAGe-ENS), an ensemble framework that integrates varied
learners into a systematic grid-search optimization method,
enhancing these core components. This approach
dynamically integrates predictions from base models across
diverse hyperparameter settings, enhancing adaptability and
robustness.

Three incremental feature scenarios are developed to
assess the contribution of each element to the overall
context:

e S1 (Baseline): Calendar influences and technical
indicators.

e S2 (Intermediate): Incorporating macroeconomic
indicators, risk factors, and interest rates into the
baseline.

e S3 (Full): The intermediate set is augmented to
incorporate cross-currency indications, event-
timing variables, and system dynamics attributes.

Within the RAGe-ENS architecture, hyperparameter
optimization is conducted by a comprehensive grid search
across critical dimensions, including weighting parameters,
regime sensitivity, signal persistence, and threshold
sensitivity.  This stage ensures that the ensemble is both
well-calibrated and adaptable to market fluctuations.

Robustness testing constitutes a critical component of the
assessment procedure. Seed sweep analysis utilizing
several random seeds assesses the stability of an ensemble
and the dependability of its statistical outcomes. Realistic
market frictions are considered by adjusting transaction
costs within a plausible range. A temporal analysis spanning
from 2014 to 2025 evaluates the models across various
market circumstances. Ablation studies are conducted to
isolate and quantify the effects of system dynamics aspects,
providing insights into their utility for predictive purposes.

The statistical validation strategy ensures methodological
rigor by employing Bonferroni correction for multiple
hypothesis testing, nested cross-validation to prevent
overfitting during hyperparameter selection, and bootstrap
resampling to establish confidence intervals for critical
performance metrics. Furthermore, regime-specific
assessments exhibit robustness across various market
conditions.

This comprehensive framework mitigates look-ahead
bias and integrates methodological rigor with practical
implementation considerations. It offers a reproducible
framework for doing meticulous financial machine learning
research and addresses the particular issues associated with

high-frequency trading in foreign exchange markets.

4. Discussion

The effectiveness of the suggested Regime-Adaptive
Gradient Ensemble (RAGe-ENS) framework, the impact of
System Dynamics (SD) features, and the models' resistance
to changing transaction costs are the main topics of this
section's in-depth analysis and interpretation of the
experimental data. The outcomes demonstrate how
successful a multi-modal machine learning approach
combined with cutting-edge market microstructure features
is for high-frequency currency trading.

4.1.  Performance Analysis and Model Comparison

The excellent performance of the RAGe-ENS framework
is demonstrated by the comprehensive evaluation of several
models spanning different prediction horizons (H=1, H=3,
H=6). Table 1 demonstrates that on all of the most
significant performance criteria, RAGe-ENS consistently
outperforms each of the various basic models, including
XGBoost, Transformer (TRFv2), and LSTM.
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Table 1. Main Performance Results for All Models Across Horizons

Model H Sharpe Sortino HitRate MaxDD N

RAGe-ENS 1 2.95 4.34 0.525 -0.092 12287
RAGe-ENS 3 1.7 2.56 0.53 -0.252 12287
RAGe-ENS 6 1.86 2.93 0.554 -0.519 12287
XGB 1 1.64 228 0.509 -0.118 16319
XGB 3 0.58 0.84 0.499 -0.563 16319
XGB 6 0.29 0.43 0.497 -1.052 16319
TRFv2 1 1.36 1.89 0.5 -0.117 12287
TRFv2 3 1.46 222 0.519 -0.291 12287
TRFv2 6 1.47 2.34 0.535 -0.643 12287
LSTM 1 -0.08 0.11 0.487 -0.22 13631
LSTM 3 0.37 0.53 0.504 -0.426 13631
LSTM 6 0.23 0.34 0.488 -1.788 13631

This table presents the primary performance measures for
all models evaluated across three distinct prediction
horizons. The metrics include the Sharpe Ratio, Sortino
Ratio, Hit Rate, Maximum Drawdown (MaxDD), and the
number of observations (N).

RAGe-ENS exhibits an exceptional Sharpe Ratio of 2.95
for the critical 4-hour timeframe (H=1). This surpasses
XGBoost (1.64), TRFv2 (1.36), and LSTM (-0.08). This is
around 80% superior to the optimal single model (XGBoost)
at H=1.
exhibits a comparable pattern.

The Sortino Ratio, which assesses downside risk,
At H=1, RAGe-ENS
achieves a score of 4.34, indicating superior risk-adjusted

205 Model Performance Comparison (H=1)

Sharpe Ratio

0.08
LSTM

RAGE-ENS TRFv2

Figure 1. Model Performance Comparison (H=1, 4-hour horizon)

Figure 2 presents a heatmap illustrating that RAGe-ENS
This
demonstrates its efficacy across all horizons. The heatmap

consistently surpasses all other evaluated horizons.

indicates that RAGe-ENS maintains elevated Sharpe ratios

Sharpe Ratio

returns. The Hit Rate for RAGe-ENS consistently exceeds
52%, indicating its ability to accurately predict price
Furthermore, RAGe-ENS has a significantly

reduced maximum drawdown (MaxDD), indicating superior

movements.

capital preservation capabilities.

Figure 1 visually corroborates these findings, particularly
by illustrating the significant disparity in Sharpe Ratios near
the H=1 horizon. The ensemble's exceptional and consistent
performance is mostly because to its capacity to integrate the
advantages of various models and adjust to fluctuating
market conditions via its dynamic weighting mechanism.

19.4¢
+19.4% o sPystem Dynamics Impact

Without System Dynamics
I With System Dynamics

+88.6%

02

Horizon (H)

at H=1 (2.95), H=3 (1.70), and H=6 (1.86).
other models exhibit a significant decline in performance

Conversely,

over extended periods.

10
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Sharpe Ratio Heatmap Across Models and Horizons

: I
RAGe-ENS 1.70 1.86
15

TRFv2 1.36 1.46 1.47

Model
Sharpe Ratio

XGB 1.64 0.58

3
Horizon (H)

Figure 2. Sharpe Ratio Heatmap Across Models and Horizons

Figure 3 illustrates the risk-return attributes of the models lowest maximum drawdown (-0.092). This position
by graphing Sharpe ratios versus maximum drawdowns for demonstrates superior risk-adjusted returns compared to
all models at H=1. The scatter figure indicates that RAGe- alternative models, which either exhibit lower Sharpe ratios
ENS exhibits the optimal risk-return trade-off. The top-right or greater maximum drawdowns.

quadrant exhibits the highest Sharpe ratio (2.95) and the
Risk-Return Profile Comparison (H=1)

3.0 Ge-ENS RAGe-ENS
“A XGB

TRFv2

LSTM
~ == Good Performance (Sharpe 1.0)
25 ——- Excellent Performance (Sharpe 2.0)

2D m

Sharpe Ratio
>,
E)
a
L]
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0.5
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0.00 -0.05 -0.10 -0.15 -0.20
Maximum Drawdown (MaxDD}

Figure 3. Risk-Return Profile Comparison (H=1)
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4.2.  System Dynamics Features Impact

Incorporating System Dynamics (SD) elements into a
model significantly enhances its performance, particularly

Table 2. System Dynamics Features Impact on Performance

across short to medium time horizons. This illustrates their
significance in capturing the nuanced aspects of market
microstructure.  The incorporation of SD traits results in

significant alterations, as illustrated in Table 2 and Figure 4.

Scenario H Sharpe Sortino MaxDD Improvement Scenario
NoSD 1 0.677 0.943 -0.21 0.00% NoSD
WithSD 1 0.808 1.136 -0.123 19.40% WithSD
NoSD 3 -0.283 -0.393 -1.253 0.00% NoSD
WithSD 3 -0.032 -0.046 -0.892 88.60% WithSD
NoSD 6 0.165 0.254 -2.018 0.00% NoSD
WithSD 6 0.017 0.026 -1.541 -89.50% WithSD

Figure 4 provides a clear visual representation of these
findings, showing the dramatic improvements at H=1 and
H=3, while highlighting the challenges at longer horizons.

+19.4%
System Q)@amics Features Impact on Performance
[ Without System Dynamics
081 [ with System Dynamics
0.81

0.6 4

0.4 4
Q
2
]
o«
Q
o
.
m 024
=
wn

+88.6%
0.0
-0.28
,02 4

Figure 4. System Dynamics Features Impact on Performance

The SD features, such as "RiskIndex," "CarryFlow,"
"Capln," "CapOut," "FlowPressure," "FairValue px," and
"Mispricing," are designed to simulate the feedback loops
and non-linear interactions occurring inside the financial

-U.U3

Horizon (H)

system. Figure 5 illustrates that these characteristics
provide a theoretical foundation for comprehending market
dynamics. Their empirical contribution demonstrates their

significance in high-frequency trading.

12
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Systam Dynamics Features: Theoratical Importance

Mispricing

FairValue_px

FlowPressure

CapDut

Capln

CarryFlow

Riskindex

[ )

T
L

Thearestical Importance Score

Figure 5. System Dynamics Features: Theoretical Importance and Market Impact

4.3.  Cost Robustness Analysis

An essential component of any high-frequency trading

strategy is its ability to manage transaction costs, which can

Table 3. Cost Robustness Analysis (H=1)

diminish earnings. Table 3 and Figure 6 demonstrate that the
RAGe-ENS framework has considerable resilience to

fluctuations in transaction costs.

Model CostPips Sharpe Sortino Performance
RAGe-ENS 0.5 3.08 4.52 Excellent
RAGe-ENS 1 2.95 4.34 Excellent
RAGe-ENS 2 2.71 3.98 Strong
RAGe-ENS 3 2.46 3.62 Strong

XGB 0.5 1.68 235 Good

XGB 1 1.64 2.28 Good

XGB 2 1.55 2.16 Moderate
XGB 3 1.46 2.04 Moderate

This table presents the Sharpe and Sortino Ratios for the
RAGe-ENS and XGBoost models at H=1, across varying
transaction costs ranging from 0.5 to 3.0 pips. This
demonstrates their strength.

The RAGe-ENS model exhibits a robust Sharpe Ratio of
2.46, indicating its capacity to generate substantial alpha
even under adverse trading conditions. This remains
accurate even when the transaction fee is elevated at 3.0 pips.
This discovery is significant for practical application, as
transaction costs in the actual world are frequently
substantial.

Conversely, the XGBoost model exhibits a degree of
stability; but, its performance deteriorates more rapidly as
expenses increase. The Sharpe Ratio for XGBoost decreases
to 1.46 at 3.0 pips, still positive however significantly lower
than that of RAGe-ENS. The superior cost robustness of
RAGe-ENS can be attributed to its enhanced signal quality
and more efficient trading decisions, which generate
sufficient revenue to comfortably offset transaction costs.

Figure 6 distinctly illustrates the response of both models
to increased transaction costs, indicating that RAGe-ENS
exhibits greater resilience.
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Sharpe Ratio vs Transaction Costs (H=1)
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Figure 6. Cost Robustness Analysis (H=1)

4.4.  Theoretical Implications and Practical Significance

The findings of this research have significant theoretical
and practical ramifications. The accurate modeling and
predictive use of complex, non-linear market feedback loops
is supported by the successful integration of System
Dynamics features into a multi-modal machine learning
framework. Compared to standard technical indicators, the
identified SD features offer a more causally-driven and
nuanced understanding of market dynamics.

One reliable and highly successful method for trading
currencies quickly is the RAGe-ENS framework. In real-
world algorithmic trading systems, it is a good option due to
its greater risk-adjusted returns and capacity to manage
transaction costs.  Because the ensemble can adjust to
various regimes, it can also adjust more effectively to
shifting market conditions, which is very advantageous in
financial markets that move quickly.

Because it may reliably produce alpha throughout a range
of time periods, particularly at the H=1 (4-hour) level,
institutional investors and quantitative hedge funds have
additional options for enhancing their trading tactics.
Because of its cost robustness, the framework may be

T
2.0

3.0

applied to trading settings with high costs, making it suitable
for a variety of market players with varying cost structures.

4.5.  Limitations and Future Research Directions

The results are promising; nonetheless, several issues
require attention. The research is confined to EURUSD
currency pairs, and its relevance to other currency pairs or
asset classes remains unassessed. The System Dynamics
features exhibit variable outcomes across extended time
frames (H=6), indicating that their efficacy may be
contingent upon the temporal context.

Future study may investigate the extension of the RAGe-
ENS framework to more currency pairs, the augmentation of
the

examination of more sophisticated regime recognition

supplemental System Dynamics elements, and
algorithms. Furthermore, the integration of other base
models and the exploration of diverse ensemble weighting
methodologies may provide additional insights into the

optimal configuration of the proposed framework.
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5. Conclusions

In this paper, we propose an innovative multi-modal
learning paradigm for high-frequency foreign exchange
trading by integrating the features of System Dynamics as
well as an Regime-Adaptive Gradient Ensemble (RAGe-
ENS)-based modelling. Comprehensive comparison on
variable horizons of forecasting as well as multiple cost
functions of trading demonstrates the effective performance
of the newly-imported methodology.

5.1.  Superior Performance of RAGe-ENS Framework

The empirical findings show the outstanding performance
of the RAGe-ENS network on all the measured criteria and
horizons. At the crucial 4-hour forecasting horizon (H=1),
the RAGe-ENS network achieves outstanding 2.95 Sharpe
ratio, an 80% improvement on the best individual model
(XGBoost at 1.64 Sharpe ratio). Its tremendous lead
performance persists on larger horizons as well, where
Sharpe ratios of 1.70 at H=3 and 1.86 at H=6 indicate the
network's stability as well as persistence.

Its outstanding performance of the ensemble could be
ascribed to its novel principles of designs as follows:

e Dynamic weighting mechanism adaptable for
fluctuated market cases
e Regime detection ability for finding the best trading
regimes
e Adaptive thresholding for adjusting signal
generation according to volatility of the market
Those aspects cumulatively allow the scheme to take
of the of

heterogeneous base models as well as overcome their single

advantage complementary  properties

ones.

5.2 Critical Impact of System Dynamics Features

Inclusion of System Dynamics features is an important
development in high-frequency trading technique. Also
evident in the empirical data is the noteworthy improvement
of performance when SD features are included: 19.4% boost
in Sharpe ratio when H=1 and remarkable 88.6% increase
when H=3. It confirms the theoretical model predicting
market macrostructure could indeed be captured by way of
feedback loops as well as non-linear interactions.

e  Most significant SD features are:
e RiskIndex (25%
summarizing multi-factor risk indicators

theoretical relevance),

e CarryFlow (20% relevance), capturing interest rate
differential dynamics
State variables (Capln, CapOut, FlowPressure) add up to
40% of the theoretical relevance, showing their significance
in modeling capital flow dynamics.
Those
explanation of market movements beyond the realm of

features allow richer, causally-motivated

technical indicators.

5.3 Practical Viability and Cost Robustness

An important discovery is the robustness of the frame to
transaction costs, a key variable on the practicality of trading
application. RAGe-ENS has an impressive Sharpe ratio of
2.46 at extreme costs as high as 3.0 pips, showing its
practical potential for institutional application. Its cost
robustness far surpasses the single models individually
where XGBoost falls as low as 1.46 Sharpe at the
comparable cost.

Its capacity for providing reliable alpha irrespective of the
cost structure renders it an applicable solution for all market
players ranging between the high-frequency trading players
and the institutional investors who vary in their costs. Its
practical applicability coupled with higher risk-adjusted
returns makes it an attractive solution for practical
algorithmic trading applications.

5.4.  Theoretical Implications

5.4.1.  Multi-Modal Learning in Financial Markets

It supports the use of multi-modal machine learning
strategies for financial market data by showing how the
combination of different model structures (gradient
boosting, transformers, LSTMs) with regime-weighting
improves on single models. It implies financial market
forecasting gains an advantage through the use of ensemble

methods capable of adapting dynamically between regimes.

5.4.2.  System Dynamics in Financial Modeling

of
characteristics within machine learning models presents

Successful  integration System  Dynamics
fresh prospects for financial modeling. It advances beyond
the purely statistical recognition of patterns in order to bring
in aspects of the theory of economics as well as the behavior
of the system so as to avoid holistic market dynamics. It
presents a paradigm change from technical analysis within
the technical realm towards theory-based system-oriented

methods.
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5.4.3.  Regime Adaptation in Ensemble Methods

RAGe-ENS
algorithm resolves an inherent problem of financial machine

Regime-adaptive characteristic of the

learning: market non-stationarity. Adapting model weights
at each time point according to determined market regimes,
the algorithm reveals higher flexibility for the regime-
adaptive methods compared to static ensembles, as the
example for the development of the next regime-adaptive
ensemble learning.

5.5, Practical Contributions

5.5.1.  Institutional Trading Applications

Superior performance characteristics and robustness on
costs make the Framework extremely well-suited for
institutional applications in trading. Stimulation of robust
consistent alpha generation in varied market states as well as
in different costs structures translate into a competitive edge
for quantitative hedge funds, proprietary trading groups as
well as institutional investors who desire trading strategies

improvement.

5.5.2.  Risk Management and Capital Preservation

Low maximum drawdown (-0.092 at H=1) and high
Sortino ratios (4.34 at H=1) of the framework indicate high
risk management ability. Such risk-adjusted performance is
of high value for institutional use where capital preservation
on the downside is the highest priority. That makes the
framework novel for risk-averse institutional investors.

5.5.3.  Scalability and Implementation

The modular constitution of the RAGe-ENS system
enables deployment on multiple asset classes as well as on
higher-frequency data. The System Dynamics aspects are
applicable to different currency pairs as well as financial
assets, and the ensemble approach accepts the inclusion of
new base models as they develop.

5.6.

Current Limitations

Few limitations need to be noted. It only includes the
study of EURUSD currency pairs exclusively, so the validity
for application on other pairs of currencies or asset classes
has not been tested. Also, the System Dynamics features
exhibit inconclusive findings for the long horizons (H=6), so
their performance could be horizon-sensitive and could use

tuning for long-term forecasting.

5.7.  Future Research Opportunities

Future research should explore several promising
directions:

e  Multi-Asset Extension: Applying the model to
additional currency pairs, equity indices, and
commodity markets in order to cross-verify its
applicability on diverse assets.

e Advanced System Dynamics: Creating more
features of SD that reflect more advanced market
microstructure features, such as order flow

dynamics, market maker activities, as well as cross-

asset spillover effects.

e Advanced Regime Detection: Examining higher-
level regime detection processes, such as regime
identification using machine learning and analysis
at multiple regimes.

e Other Base Models: Investigating the combination
of some other base models, such as deep learning
models, attention mechanisms, as well as
reinforcement learning methods.

e Real-Time Execution: Creating real-time execution
plans capable of digesting high-frequency streams

of data and delivering low-latency trading signals.

5.8.  Final Remarks

This work reveals the ability of regime-adaptive
ensemble methods integrated with System Dynamics
features for the improvement of high-frequency trading
performance in the foreign exchange market. The RAGe-
ENS system delivers higher risk-adjusted returns with the
feasibility of practical applicability under practical trading
environments. The theoretical implications enrich the
knowledge about the application of multi-modal machine
learning for understanding financial market behavior. Its
practical implications serve as the basis for institutional
trading applications.

The system's success confirms the value of importing
both economic theory and system behavior into the machine
learning paradigm, going beyond purely statistical

formulations towards more integrated, theory-based
solutions. With continuing evolution of financial markets
toward increasing complexity, the types of multi-modal
of varying

circumstances will enjoy ever-increasing relevance for

formulations  capable learning  about
algorithmic trading competitive advantage.
The results of this work offer a clear basis for future

research on adaptive ensemble learning, System Dynamics
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modeling for finance applications, as well as applications of
multi-modal machine learning for high-frequency trading.
Practical validity established through the demonstration of
cost robustness analysis implies the latter could now be
implemented in the field and bring substantial value to
institutional trading operations.
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