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Abstract 

This study introduces a novel multi-modal machine learning framework for high-frequency EURUSD trading that combines 

regime-adaptive ensemble approaches with system dynamics features.   We develop seven system dynamics features—

RiskIndex, CarryFlow, CapIn, CapOut, FlowPressure, FairValue_px, and Mispricing—that illustrate the small-scale 

functioning of the market.   Our RAGe-ENS (Regime-Adaptive Gradient Ensemble) approach adjusts the weights of 

Transformer and XGBoost forecasts according on their ability to identify regimes and their agreement with actual results.   

Utilizing 4-hour EURUSD data from 2012 to 2025 (20,119 observations), we examine many models over three time periods 

(1, 3, and 6 periods).   RAGe-ENS performs exceptionally well, according to the results, with Sharpe ratios of 2.91 (H=1), 

1.41 (H=3), and 1.47 (H=6).  Compared to the performance of individual models, this is far superior.   The Sharpe ratios of 

H=1 and H=3 increase by 19.4%, 88.6%, and 6%, respectively, depending on the system dynamics aspects.   The framework 

produces alpha in high-frequency currency markets, as evidenced by its high PSR values and significant statistical 

significance. 
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1. Introduction 

The foreign currency (FX) market is the largest and most 

dynamic financial market globally. It transacts over $7 

trillion daily, significantly surpassing the stock and bond 

markets [1]. Foreign exchange prediction remains a 

significant challenge as it influences global trade, 

investment, and monetary policy. Fluctuations in foreign 

exchange rates directly influence a nation's competitiveness, 

the volume of capital inflows and outflows, and the valuation 

of its assets [2]. 

It is widely acknowledged that predicting exchange rates 

is challenging due to the market's inherent instability, 

nonlinearity, non-stationarity, and propensity for regime 

shifts. Conventional econometric models, including 

ARIMA, GARCH, and VAR, frequently do not surpass the 

random walk criterion, especially in short-term intervals [3]. 

This empirical difficulty highlights the necessity for 

sophisticated approaches capable of capturing intricate 

processes. 

Recent advancements in machine learning (ML) and deep 

learning (DL) have yielded promising answers.   Attention-

based LSTM [4] and Transformer topologies using temporal 

embeddings [5] have demonstrated superior predictive 

accuracy compared to statistical models, particularly for 

high-frequency foreign exchange data.   These models may 

identify nonlinear dependencies, retain information over 

extended periods, and utilize sequential patterns in noisy 

time series data.   Moreover, hybrid frameworks that 

integrate machine learning with fundamental and technical 

indicators or combine decomposition with neural networks 
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[6] have shown substantial improvements in predicting 

performance. 

However, there are still issues that require attention. 

Many machine learning models face overfitting issues, lack 

interpretability, and show limited resilience in real-world 

trading scenarios [2]. Additionally, static ensemble 

approaches are not effective in live trading settings due to 

their inability to adjust to rapidly shifting market conditions 

[7]. This disparity has led to increased interest in regime-

sensitive ensembles and the incorporation of system 

dynamics characteristics, such as capital flows, 

macroeconomic hazards, and mispricing feedback loops, 

that capture structural interactions [8]. 

In this paper, a regime-adaptive ensemble (RAGe-ENS) 

technique is combined with system dynamics features to 

provide a multi-modal machine learning framework for 

high-frequency EUR/USD trading. We assess the accuracy 

of our forecasts across a range of time periods and 

transaction costs using 4-hour EUR/USD data from 2012 to 

2025. Three significant contributions are made by this study: 

• Theoretical: Demonstrating the integration of 

system dynamics concepts with ML forecasting, 

providing a richer understanding of market 

microstructure. 

• Methodological: Developing a regime-adaptive 

ensemble framework that dynamically weights 

base models (XGBoost and Transformer) 

according to market regimes. 

• Practical: Showing statistically significant and 

cost-robust profitability, highlighting the 

applicability of the framework in institutional high-

frequency trading. 

2.  Literature Review 

2.1. Importance of FX Prediction 

The foreign currency (FX) market, or Over-the-Counter 

(OTC) market, is the largest financial market globally.  It 

differs from other markets, such as the stock market, due to 

its significant leverage and lack of centralization [9, 10].   

Forecasting foreign exchange rates is a significant financial 

challenge crucial to worldwide investments and global 

commerce.  Variations in these rates influence the prices of 

products and services that are exchanged [11]. 

2.2. Historical Difficulties and Forecasting Challenges 

The foreign exchange market is intricate due to its 

volatility, nonlinearity, non-stationarity, and chaotic nature 

[12]. The currency market has grown increasingly complex 

since the Bretton Woods system was supplanted by the free-

floating system in 1971 [13]. The noisy and tumultuous 

environment significantly complicates the forecasting of 

short-term trends [14]. Historically, empirical evidence 

frequently failed to support conventional forecasting 

models, rendering the Random Walk model a formidable 

benchmark [15]. 

2.3. Motivation for Modern ML Approaches 

Due to the limitations of classic statistical methods, which 

struggle with stringent distribution assumptions and the 

identification of non-linear and non-stationary patterns [16], 

the utilization of modern Machine Learning (ML) and Deep 

Learning (DL) techniques is imperative [1].     These models 

excel at replicating the non-linear and non-stationary 

features inherent to exchange rates [16]. 

2.4. Traditional Econometric Approaches 

2.4.1. Structural Models (PPP, UIP, Taylor rule, 

Monetary Models) 

Conventional financial analysis relies on structural 

models derived from financial theory.     The Uncovered 

Interest Rate Parity (UIRP) is a fundamental idea that 

elucidates the impact of interest rate differentials between 

two nations on their exchange rates [17]. 

2.4.2. Time-Series Models (ARIMA, GARCH, VAR, 

VECM) 

Statistical techniques, including Autoregressive 

Integrated Moving Average (ARIMA) and Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) 

models, are commonly employed for forecasting exchange 

rates [18]. GARCH models are primarily employed for 

forecasting foreign exchange volatility, often capturing 

characteristics such as volatility clustering and [11]. 

Statistical methods frequently yield disappointing results 

because of their insufficient ability to clarify the complex 

relationships present in non-linear and non-stationary data 

[16]. Empirical evaluations regularly show that deep 

learning methods, such as LSTM, provide significantly 

lower Root Mean Square Error (RMSE) than traditional 

ARIMA models in time series forecasting [19]. 
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2.5. Technical vs. Fundamental Paradigms 

Many individuals employ Technical Analysis (TA) to 

forecast the foreign exchange market utilizing historical data 

[20]. This is due to the assumption in technical analysis that 

historical price patterns will recur. Technical indicators are 

mathematical formulas that utilize historical data on price, 

volume, or open interest [4]. These indicators assist in 

identifying patterns, trends, momentum, volatility, trend 

strength, and market cycles [4]. The Relative Strength Index 

(RSI), Moving Average Convergence Divergence (MACD), 

and other forms of Moving Averages (SMA, EMA) 

exemplify technical indicators [21]. 

Fundamental Analysis (FA) considers macroeconomic, 

political, and social issues that influence the market [22]. 

Central bank interest rates, inflation rates, GDP growth, and 

trade balances are essential determinants as they influence 

public expectations regarding the economy [4]. Text mining 

methodologies are commonly utilized to examine news and 

extract trading principles from basic data, which is otherwise 

inadequately documented in the literature [23]. Market 

sentiment, derived from news stories, forecasts, and social 

media discussions, is employed to assess market confidence 

[4]. 

The Efficient Market Hypothesis (EMH), in its weak 

form, asserts that technical methods should not yield gains 

above those of passive investments (Malkiel & Fama, 1970). 

Empirical research regularly shows that technical trading 

tactics can yield gains in foreign exchange trading [24]. 

However, some evaluations suggest that the effectiveness of 

conventional technical solutions has diminished recently 

[25]. 

2.6. Machine Learning in FX 

2.6.1. Early ML Applications (ANN, SVM, Tree-Based 

Models: RF, XGBoost) 

Utilizing machine learning to model non-linear and non-

stationary exchange rate data is an appropriate application 

[16].  Due to their enhanced data fitting skills, Artificial 

Neural Networks (ANNs) have surpassed linear statistical 

methods [1]. Artificial neural networks trained using 

backpropagation may become ensnared in local minima, 

hence constraining their generalization capabilities [26]. The 

challenge is particularly pronounced in financial markets, 

where optimization landscapes often exhibit noise and lack 

convexity, leading to suboptimal convergence points. 

Support Vector Machines (SVMs) and Support Vector 

Regression (SVR) may effectively learn exchange rate time 

series, demonstrating low generalization error [27]. The 

reconstruction of the concealed phase space of currency 

dynamics has markedly diminished forecast errors in recent 

implementations of chaos-based Support Vector Regression 

(SVR) [28]. 

Tree-based models, like Random Forest (RF) [29] and 

Extreme Gradient Boosting (XGBoost) [30], are preferred 

for foreign currency forecasting due to their robustness, 

interpretability, and capacity to manage high-dimensional 

data [13]. Machine learning models are often integrated with 

various models in foreign exchange research, including 

Ridge Regression, K-Nearest Neighbors (KNN), Random 

Forest (RF), XGBoost, Gradient Boosting Decision Trees 

(GBDT), Artificial Neural Networks (ANN), Long Short-

Term Memory (LSTM), and Gated Recurrent Units (GRU).     

Ensemble or hybrid configurations are prevalent 

applications for these model [31]. 

2.6.2. Feature Selection and Interpretability 

The performance of a predictive model hinges on the 

inclusion of relevant features; however, using too many 

features can worsen performance due to noisy variables or 

collinearity [32]. Feature selection aims to improve 

prediction speed, ease the interpretation of predictors, and 

enhance performance by eliminating noisy features [33]. The 

goal is often to develop models that are parsimonious, 

interpretable, and accurate [34]. 

• Simple linear models, such as those based on Linear 

Discriminant Analysis (LDA), have been shown to achieve 

exceptionally high classification accuracy (up to 98.77% 

out-of-sample for EUR/USD directional movement) while 

maintaining interpretability, often surpassing more complex 

models like LSTM and Deep Reinforcement Learning 

(DRL) [34]. 

2.7. Deep Learning Architectures 

2.7.1. RNN, LSTM, GRU and Variants 

According to the algorithmic trading literature [10], 

neural network methods (ANN, LSTM, GRU) outperform 

other machine learning models.  This supremacy arises from 

their ability to leverage several parameters (weight, bias, 

number of layers, and units), facilitated by modern 

computational resources [13]. 
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• Recurrent Neural Networks (RNNs) are suitable for 

sequential data but encounter the vanishing 

gradient issue over time [35]. 

• Hochreiter and Schmidhuber in 1997 introduced 

Long Short-Term Memory (LSTM) networks to 

address the vanishing gradient issue inherent in 

RNNs [13]. 

• Various LSTM variants, such as Stacked-LSTM 

[34] and Bidirectional LSTM [16], are examined to 

enhance performance. 

2.7.2. Transformers and Attention-Based Models (BERT, 

Hybrid Transformers) 

The self-attention mechanism, derived from the 

Transformer model [36], is significant since it enables 

models to learn and retain associations between non-

adjacent data items.  This addresses the issue of information 

loss in lengthy consecutive inputs [37].   BERT 

(Bidirectional Encoder Representations from Transformers) 

is a prominent architecture that employs this method.  

Initially deigned for natural language processing, it has been 

adapted to handle time series data due to its capability to 

utilize information from both preceding and subsequent 

timestamps [37]. 

Hybrid deep learning architectures have been 

investigated to enhance predicting accuracy.   Autoencoder-

LSTM models have been proposed for forecasting FX 

volatility.  The autoencoder functions similarly to principal 

component analysis by autonomously extracting minimal 

feature representations from input data [11].   Additionally, 

decomposition-based hybrid models, such the combination 

of Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise (CEEMDAN) and LSTM, are utilized to 

address the inherent non-linearity and non-stationarity in 

Forex time series [38].   The Multi-Modal Cross Attention 

Network (MCASP) is a sophisticated architecture that 

employs a unified deep learning framework to model 

associations both inside the same type of data (intra-modal) 

and across different types of data (inter-modal).  Thus, it can 

encapsulate the cumulative impact of several input streams 

[31]. 

 Concurrently, ensemble and regime-sensitive 

approaches are increasingly employed to improve model 

robustness and flexibility.   Ensemble learning, through 

methods like as bagging, boosting, and stacking, integrates 

many base learners to improve predictive accuracy and 

generalization robustness [16].   Stacking is a sophisticated 

ensemble method that has been effectively utilized by 

combining Random Forest and Support Vector Regression 

(SVR) models for multi-horizon exchange rate forecasting 

[28]. A separate study proposed a hybrid ensemble model 

that combines multi-class SVM (EmcSVM) with fuzzy logic 

(NSGA-II), functioning as a trading filter that permits buy or 

sell transactions exclusively when the projected market trend 

is recognized as either an uptrend or a downtrend [20]. 

Ensemble approaches that respond to regime changes 

frequently employ adaptive weighting and model swapping. 

These multi-model frameworks are predicated on the notion 

that the Forex market comprises many trading methods and 

behavioral regimes.  They contend that even basic models 

can provide profits during specific market phases if tailored 

for particular currency pairs [7].   Adaptive solutions, such 

as the "leader correction approach," enable the selection of 

the model that generated the highest profit during the latest 

evaluation period [7].   This strategy is purportedly capable 

of effectively managing the hazards of overfitting using a 

concept termed "positive overfitting," indicating that short-

term model specialization can yield beneficial and lucrative 

predictions in rapidly changing contexts [7]. 

2.8. Feature Engineering and Multi-Modal Data 

Technical indicators are crucial due to their extensive 

utilization as input aspects.  They assess factors such as 

volatility, trend, and momentum [4].  Recent studies 

demonstrate that models are increasingly integrating 

macroeconomic factors alongside technological data [39].   

Interest rates, inflation rates, GDP growth, and employment 

statistics are among the most significant variables [4].  

Investigations have begun investigating the predicted impact 

of environmental variables—such as CO₂ levels—and 

commodity prices, especially Brent crude oil, on currency 

rates like EUR/USD [9].  The Elliott Wave Theory has been 

adapted to identify event-driven features that aid in the 

selection of training data by determining critical entrance 

and exit points [40]. Alternative data sources—such as 

market sentiment extracted from corporate news, 

governmental policy declarations [41], and financial news 

headlines [6]—are increasingly recognized as methods to 

assess the general disposition of market participants [4]. The 

use of textual data from social media and business financial 

reports is recognized as a crucial future direction [32]. 

Multi-modal models (dual-input or fusion models) 

integrate and analyze many data types (such as historical 

prices, news text, and technical indicators) into a unified 
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framework [31].   BERTFOREX is a cascade aggregation 

model that utilizes patterns extracted by BERT from 

fundamental data as weights on technical indicator features 

to emulate trader behavior [37].  A recent dual-input LSTM 

design employing both technical and fundamental data in 

parallel streams to forecast EUR/USD closing values 

exemplifies this approach.  The dual-input model exhibited 

a 24–29% reduction in MAE/RMSE compared to single-

input baselines [39]. 

2.8.1. Overfitting Risks and Prevention (Regularization, 

Walk-Forward Validation) 

The crucial issue of overfitting occurs when a trading 

system adjusts too closely to past data, rendering it 

unsuccessful in the future [7]. Rolling walk-forward 

optimization is an established method to improve model 

resilience and mitigate overfitting in dynamic financial time 

series.  Regularization strategies are crucial for mitigation 

[13]. 

2.8.2. Realistic Backtesting (Transaction Costs, 

Liquidity, Capital Constraints) 

A persistent gap in the literature is the failure to account 

for real-world trading factors .To obtain reliable, profitable 

results, a realistic backtesting process must incorporate 

factors such as spread, slippage, and transaction costs [7]. 

Evaluating trading systems across three possible signal 

scenarios (buy and sell, only buy, and only sell) is also 

necessary to reduce the effect of survivorship bias [13].  

2.8.3. Evaluation Metrics 

Three primary categories of evaluation criteria utilized 

for forecasting exchange rates and trading strategies are 

economic, statistical, and robustness-based.   The Sharpe 

Ratio (SR) and its annualized variant (ASR) are frequently 

employed to assess the risk-adjusted returns of a forecasting 

or trading strategy from an economic perspective.   These 

figures illustrate the additional return obtained for each unit 

of risk incurred.   A limitation of the Sharpe Ratio is its equal 

treatment of both upside and downside volatility.   

Consequently, modern research often promotes the Sortino 

Ratio, which solely identifies and penalizes downside risk, 

thereby offering a more precise depiction of risk in 

investment performance  [13]. 

Various error measures are employed to assess the 

accuracy of prediction models, particularly in regression 

tasks.   Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and Root Mean Square Error 

(RMSE) are among these metrics.  They assess the deviation 

of projected values from actual observed outcomes.   These 

metrics are particularly useful for assessing the precision of 

short-term forecasts and are frequently employed in machine 

learning and time-series forecasting studies [1]. 

Robustness tests are designed to determine whether the 

performance discrepancies between models are statistically 

significant or merely random variation. The Diebold–

Mariano test is a prevalent method for directly comparing 

the accuracy of forecasts from two competing models, under 

the null hypothesis that their predictive powers are 

equivalent. In addition to the Diebold–Mariano test, other 

statistical approaches, such as the independent t-test and 

bootstrapping techniques, are employed, especially in 

finance research where the assumptions of normality and 

independence may not always hold [13]. 

2.9.  Identified Gaps in the Literature 

2.9.1. Lack of High-Frequency, Long-Horizon FX 

Studies 

There is a lack of progress in developing high-frequency 

foreign currency prediction models (such as hourly 

forecasts) that can handle chaotic and noisy time series and 

the immediate impacts of outside factors [37]. High-

frequency environments are still quite challenging [4]. 

2.9.2. Static Ensembles vs. Adaptive Frameworks 

Many ensemble models rely on basic averaging or static 

combinations [37]. he "leader correction approach" alone is 

insufficient; we require more sophisticated, adaptable 

frameworks that can continue to optimize as market 

conditions change [7]. 

2.9.3. Limited Integration of System Dynamics into ML 

 The unrealistic assumption of constant volatility in 

directional prediction models is often ignored in favor of 

technical analysis in research [42]. To strengthen model 

robustness, future studies should concentrate on measuring 

and methodically incorporating additional system dynamics, 

such as macroeconomic factors, political environments, 

central bank actions, market mood, and risk tolerance [1]. 
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2.9.4. Insufficient Evaluation under Realistic Trading 

Conditions 

3. One prevalent issue is that while backtesting, research 

3. don't always account for real-world variables like 

3. spread, slippage, and transaction costs.  Accordingly, 

3. even very precise forecasts may not turn a profit in the 

3. real world [7]. Thorough testing under actual trading 

3. settings is a crucial area that still requires 

3. improvement.Research 

3.1. Dataset and Experimental Framework 

3.1.1. Data Source and Temporal Coverage: 

This study uses a large dataset of 4-hour EURUSD price 

data with 20,119 observations from September 6, 2012, to 

August 19, 2025.  The dataset, which covers significant 

market events like the European debt crisis, Brexit, the 

COVID-19 pandemic, and numerous central bank policy 

changes, is among the most comprehensive high-frequency 

currency trading datasets in academic literature.  For 

complex machine learning models, the temporal resolution 

of 4-hour intervals offers the best trade-off between 

capturing intraday fluctuations and preserving 

computational tractability. 

3.1.2. Data Quality and Preprocessing: 

With 96.57% of observations taking place at precise 4-

hour intervals, the dataset exhibits remarkable temporal 

consistency, guaranteeing accurate time-series analysis.  

Time zone-related artifacts are eliminated by standardizing 

all timestamps to UTC.  Comprehensive missing value 

analysis is part of the preprocessing pipeline, and key 

columns exhibit low rates of missing data (usually less than 

5% for core characteristics).  In order to preserve temporal 

causality and prevent look-ahead bias in feature 

development, forward-fill techniques are used cautiously. 

3.1.3. Feature Engineering Architecture: 

The study used a complex multi-layered feature 

engineering framework consisting of 64 features categorized 

into seven unique groups, each aimed at capturing various 

facets of market dynamics: 

 Price and Technical Analysis Features (17 features): This 

category includes conventional technical indicators such as 

EURUSD OHLC prices, logarithmic returns, simple and 

exponential moving averages (SMA_5, SMA_20, EMA_12, 

EMA_26), MACD and its signal lines, Bollinger Bands 

(upper, middle, lower), RSI_14, ATR_14, and 24-hour 

volatility metrics.  These aspects establish the groundwork 

for forecasts based on technical analysis and act as baseline 

elements for comparison with more advanced 

methodologies. 

 Macroeconomic and Risk Features (10 features): This 

category encompasses worldwide market sentiment and risk 

determinants, including the Dollar Index (DXY), VIX 

volatility index, precious metals (XAUUSD, XAGUSD), 

energy commodities (UKOIL), and principal equity indexes 

(NDX, SPX, DJI, SX5E, COPPER).  These attributes are 

essential for identifying regime shifts and systemic risk 

elements that affect currency markets. 

 Interest Rate and Yield Features (6 features): This 

category encompasses EUR and USD overnight rates, 2-year 

government bond yields (DE02Y, US02Y), interest rate 

differentials, and yield spreads.  These aspects encapsulate 

carry trade dynamics and monetary policy anticipations that 

substantially affect currency fluctuations. 

 Cross-Currency Features (6 features): This category 

encompasses primary currency pairs (AUDUSD, GBPUSD, 

NZDUSD, USDCAD, USDCHF, USDJPY) to analyze 

relative strength patterns and identify cross-currency 

arbitrage opportunities. 

 Event Timing Features (24 features): This category 

encompasses the temporal proximity to significant economic 

releases such as CPI, GDP, employment data, and central 

bank meetings for both the EU and US economies.  Features 

encompass the duration since the last release, the interval till 

the next release, and binary indicators for recent releases, 

facilitating the models' adaptation to news-driven market 

fluctuations. 

 Calendar and Temporal Features (7 features): This 

category encompasses hour-of-day and day-of-week with 

cyclic encoding (sin/cos transformations), as well as holiday 

indicators to capture intraday and seasonal patterns in 

currency markets. 

 System Dynamics Features (seven features): This 

innovative category constitutes the primary contribution of 

this research, encapsulating market microstructure dynamics 

via advanced mathematical models. 

3.2. System Dynamics Feature Construction 

The system dynamics characteristics are based on control 

theory and dynamical systems theory, regarding financial 

markets as complex adaptive systems with numerous 

interacting state variables.  These qualities elucidate the 
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fundamental causes influencing price fluctuations beyond 

conventional technical indications. 

3.3. RiskIndex - Multi-Factor Risk Aggregation: 

The RiskIndex represents a comprehensive measure of 

market stress by aggregating multiple risk factors using 

rolling z-score normalization: 

RiskIndext =
1

4
[
z(VIXt) + z(DXYt) − z(XAUUSDt) −

z(UKOILt)
] (1) 

Where the rolling z-score is defined as: 

z(xt) =
xt − μt
σt + ϵ

 (2) 

with μt and σt computed over a 240-period rolling 

window (approximately 40 trading days) with a minimum of 

60 observations. The negative signs for gold and oil reflect 

their inverse relationship with risk sentiment - higher 

gold and oil prices typically indicate increased market stress. 

The RiskIndex provides a normalized measure of market 

stress that adapts to changing volatility regimes. 

3.4. CarryFlow - Interest Rate Differential Dynamics: 

The CarryFlow feature captures the dynamic evolution of 

interest rate differentials, which drive capital flows in 

currency markets: 

CarryFlow
t
= MAshort(Spread

t
) − MAlong(Spread

t
) 

Where MAshort and MAlong represent 72-period (12 

days) and 240-period (40 days) moving averages 

respectively. The CarryFlow feature captures the momentum 

in interest rate differentials, providing early signals of capital 

flow changes that precede currency movements. 

3.5. State Variables - Leaky Integrator Models: 

The state variables represent the accumulation of market 

forces over time using leaky integrator dynamics: 

CapIn
t
= (1 − δc) × CapIn

t−1
+ gc × CarryFlow

t
 (3) 

CapOut
t
= (1 − δr) × CapOut

t−1
+ gr × (−RiskIndext) (4) 

FlowPressuret = CapIn
t
− CapOut

t
 (5) 

Where  δc = δr = 0.005 represents the decay rate (half-

life ≈ 139 periods), and gc = gr = 1.0 represents the gain 

factors. CapIn represents the accumulation of positive carry 

flows, while CapOut represents the accumulation of 

risk factors. FlowPressure represents the net pressure from 

capital flows, providing a comprehensive measure of market 

dynamics. 

3.6. Fair Value Estimation - Rolling Causal Beta: 

The Fair Value feature provides a dynamic fundamental 

valuation based on rolling regression analysis: 

 

βj,t =
Cov(Xj,t, Yt)

Var(Xj,t)
 

FVt =∑βj,t
j

× (Xj,t − μj,t) + μy,t 

Mispricing
t
= Pricet − FVt 

 

The regression uses DXY, yield spreads, and RiskIndex 

as explanatory variables with a 240-period rolling window. 

The Mispricing feature captures deviations 

from fundamental value, providing contrarian signals during 

market dislocations. 

o Machine Learning Model Architectures 

XGBoost Settings: The XGBoost implementation 

employs gradient boosting with  hyperparameters 

meticulously optimized for financial time series analysis. 

The parameters consist of max_depth=6 to prevent 

overfitting, n_estimators=500 to enhance model complexity, 

and learning_rate=0.05 to ensure steady convergence. The 

subsampling parameters (subsample=0.8, 

colsample_bytree=0.8) introduce regularization, while 

random_state=123 ensures reproducibility of results.   The 

model employs RMSE as the evaluation metric, which is 

effective for regression tasks in financial predictions. 

The Transformer implementation employs a multi-head 

attention mechanism including four attention heads and four 

levels.  This enables it to identify patterns in a highly 

sophisticated manner.   The model features a 128-

dimensional embedding space and employs a dropout rate of 

0.30 for regularization purposes.   The architecture employs 

sinusoidal positional encoding and Rotary Position 

Embedding (RoPE) to enhance temporal comprehension.   

The output layer generates 3D predictions for multi-horizon 

forecasting (1, 3, and 6 periods), enabling the model to 

concurrently learn horizon-specific patterns. 

  Configuration of LSTM:  The LSTM configuration 

comprises two layers and 192 hidden units.  It can 

comprehensively identify trends over time.   The model 

incorporates an input mixing layer (256 → feature_dim with 

GELU activation) that modifies the features prior to their 

processing by the LSTM.   The model's bidirectional 

architecture enables it to capture both forward and backward 

temporal dependencies, which is crucial for evaluating 

financial time 
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3.7. RAGe-ENS Framework - Regime-Adaptive Gradient 

Ensemble 

Theoretical Justification:  The RAGe-ENS framework 

addresses the primary challenge of ensemble methods in 

financial markets: their necessity to adapt to market 

fluctuations.   Conventional ensemble methods employ static 

weighting systems that fail to consider the temporal 

fluctuations of financial markets.  Various models may 

perform more effectively under distinct market conditions.  

Dynamic Weighting Framework:  The primary innovation of 

RAGe-ENS is its dynamic weighting mechanism predicated 

on correlations: 

 

wxgb =
max (0,corr(yxgb̂, ytrue))

corrxgb + corrtrf + ϵ
 

(9) 

wtrf = 1 − wxgb subject to wxgb ≥ Wmin,xgb

= 0,65 

(10) 

This weighting strategy guarantees that models exhibiting 

a higher correlation to actual returns are assigned greater 

weight, while also preserving a minimum weight for the 

XGBoost model to ensure stability. The correlation is 

calculated using rolling windows to accommodate 

fluctuating market conditions. 

Algorithm for Regime Detection:The regime detection 

mechanism employs the intensity of Transformer forecasts 

as an indicator of market volatility and trend robustness. 

regime_mag
t
= |ytrf3.t̂| (11) 

regime_ema
t
= α × regime_mag

t

+ (1 − α) × regime_ema
t−1

 

(12) 

regime_scale = 1 + REGIME_GAIN

× (mean(regime_ema)

− 0.5) × 2.0 

(13) 

Where α = 0.15 represents the smoothing parameter. The 

regime detection identifies periods of high volatility and 

strong trends, enabling adaptive model weighting.Adaptive 

Thresholding System:The thresholding system adapts to 

market regimes by adjusting the signal generation 

thresholds: 

qadj = clip(mean(regime_ema)

− 0.5, −0.5,0.5) × 0.06 

(14) 

quse = clip(qfold + qadj, 0.75,0.90) (15) 

This system reduces thresholds during high-volatility 

periods (more signals) and increases thresholds during low-

volatility periods (fewer, higher-quality signals). 

Signal Generation and Position Sizing:The final signal 

generation combines ensemble predictions with 

adaptive thresholding: 

sens = wxgb × z(yxgb̂) + wtrf × z(ytrf̂) (16) 

ν = NU_FACTOR × MAD(sens) (17) 

sig
t
= +1 if sens,t ≥ ν, else sig

t
= −1 if sens,t

≤ −ν, else sig
t
= 0 

(18) 

The neutral band (ν) is determined by the median absolute 

deviation (MAD) of ensemble scores, providing adaptive 

thresholding based on signal strength distribution. 

3.8. Comprehensive Evaluation Framework 

3.8.1. Walk-Forward Validation Protocol: 

The assessment utilizes a stringent walk-forward 

validation framework with 42 folds, each consisting of 24 

months of training data, 3 months of validation data, and 3 

months of testing data. A one-month embargo period 

between folds mitigates data leakage and guarantees 

authentic trading circumstances. This technique ensures 

rigorous out-of-sample assessment while preserving 

adequate data for model training. 

3.8.2. Performance Metrics and Statistical Analysis: 

The evaluation framework comprises a comprehensive 

array of performance metrics: 

  Returns Adjusted for Risk:  The Sharpe ratio and Sortino 

ratio are two metrics for assessing performance while 

considering risk.  Every horizon possesses distinct 

annualization factors. 

Sharpe =
μnet

σnet

× √Ann (19) 

Sortino =
μnet

σdownside

× √Ann (20) 

Annh = max (1,
6

h
) × 252 

(21) 

Hit Rate Analysis: The proportion of profitable trades 

provides insight into the efficacy and reliability of the 

signals. 

Maximum drawdown analysis provides critical insights 

for risk management, while exposure analysis ensures that 

position sizes are feasible. 

Modeling Transaction Costs:  An exhaustive examination 

of transaction costs ranging from 0.5 to 3.0 pips, 

encompassing bid-ask spreads, market effect, and timing 

costs: 

TCt = turnst × (cost_pips × 10−4) (22) 
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turnst = |sign(sig
t
) − sign(sig

t−1
)| (23) 

nett = sig
t
× ytrue,t − TCt (24) 

Statistical Significance Testing: The Probabilistic Sharpe 

Ratio (PSR) and the Deflated Sharpe Ratio (DSR) are 

employed to assess statistical significance, ensuring that 

performance enhancements are not attributable to random 

variation.  Establishing the Target Variables:  The target 

variables are derived by calculating the logarithmic returns 

over the specified time intervals: 

yreg,h = log (
Pricet+h

Pricet
) 

(25) 

For horizons h ∈ [1, 3, 6] representing 4, 12, and 24-hour 

predictions. This construction ensures stationarity 

and enables direct comparison across different horizons. 

3.8.3. Experimental Design and Robustness Testing 

The empirical design of this study is grounded in a 

comprehensive and multifaceted framework for evaluating 

models.   In the preliminary stage, various models, including 

XGBoost, Transformer, and LSTM, are examined separately 

to establish baseline predictive performance.   The study 

introduces the Regime-Adaptive Gradient Ensemble 

(RAGe-ENS), an ensemble framework that integrates varied 

learners into a systematic grid-search optimization method, 

enhancing these core components.   This approach 

dynamically integrates predictions from base models across 

diverse hyperparameter settings, enhancing adaptability and 

robustness. 

Three incremental feature scenarios are developed to 

assess the contribution of each element to the overall 

context: 

• S1 (Baseline): Calendar influences and technical 

indicators. 

• S2 (Intermediate): Incorporating macroeconomic 

indicators, risk factors, and interest rates into the 

baseline. 

• S3 (Full): The intermediate set is augmented to 

incorporate cross-currency indications, event-

timing variables, and system dynamics attributes. 

Within the RAGe-ENS architecture, hyperparameter 

optimization is conducted by a comprehensive grid search 

across critical dimensions, including weighting parameters, 

regime sensitivity, signal persistence, and threshold 

sensitivity.   This stage ensures that the ensemble is both 

well-calibrated and adaptable to market fluctuations. 

Robustness testing constitutes a critical component of the 

assessment procedure.   Seed sweep analysis utilizing 

several random seeds assesses the stability of an ensemble 

and the dependability of its statistical outcomes.   Realistic 

market frictions are considered by adjusting transaction 

costs within a plausible range.  A temporal analysis spanning 

from 2014 to 2025 evaluates the models across various 

market circumstances.   Ablation studies are conducted to 

isolate and quantify the effects of system dynamics aspects, 

providing insights into their utility for predictive purposes. 

The statistical validation strategy ensures methodological 

rigor by employing Bonferroni correction for multiple 

hypothesis testing, nested cross-validation to prevent 

overfitting during hyperparameter selection, and bootstrap 

resampling to establish confidence intervals for critical 

performance metrics.   Furthermore, regime-specific 

assessments exhibit robustness across various market 

conditions. 

This comprehensive framework mitigates look-ahead 

bias and integrates methodological rigor with practical 

implementation considerations.   It offers a reproducible 

framework for doing meticulous financial machine learning 

research and addresses the particular issues associated with 

high-frequency trading in foreign exchange markets. 

4. Discussion 

The effectiveness of the suggested Regime-Adaptive 

Gradient Ensemble (RAGe-ENS) framework, the impact of 

System Dynamics (SD) features, and the models' resistance 

to changing transaction costs are the main topics of this 

section's in-depth analysis and interpretation of the 

experimental data. The outcomes demonstrate how 

successful a multi-modal machine learning approach 

combined with cutting-edge market microstructure features 

is for high-frequency currency trading. 

4.1. Performance Analysis and Model Comparison 

The excellent performance of the RAGe-ENS framework 

is demonstrated by the comprehensive evaluation of several 

models spanning different prediction horizons (H=1, H=3, 

H=6). Table 1 demonstrates that on all of the most 

significant performance criteria, RAGe-ENS consistently 

outperforms each of the various basic models, including 

XGBoost, Transformer (TRFv2), and LSTM. 
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Table 1. Main Performance Results for All Models Across Horizons 

Model H Sharpe Sortino HitRate MaxDD N 

RAGe-ENS 1 2.95 4.34 0.525 -0.092 12287 

RAGe-ENS 3 1.7 2.56 0.53 -0.252 12287 

RAGe-ENS 6 1.86 2.93 0.554 -0.519 12287 

XGB 1 1.64 2.28 0.509 -0.118 16319 

XGB 3 0.58 0.84 0.499 -0.563 16319 

XGB 6 0.29 0.43 0.497 -1.052 16319 

TRFv2 1 1.36 1.89 0.5 -0.117 12287 

TRFv2 3 1.46 2.22 0.519 -0.291 12287 

TRFv2 6 1.47 2.34 0.535 -0.643 12287 

LSTM 1 -0.08 0.11 0.487 -0.22 13631 

LSTM 3 0.37 0.53 0.504 -0.426 13631 

LSTM 6 0.23 0.34 0.488 -1.788 13631 

 

This table presents the primary performance measures for 

all models evaluated across three distinct prediction 

horizons.   The metrics include the Sharpe Ratio, Sortino 

Ratio, Hit Rate, Maximum Drawdown (MaxDD), and the 

number of observations (N). 

RAGe-ENS exhibits an exceptional Sharpe Ratio of 2.95 

for the critical 4-hour timeframe (H=1).  This surpasses 

XGBoost (1.64), TRFv2 (1.36), and LSTM (-0.08).   This is 

around 80% superior to the optimal single model (XGBoost) 

at H=1.   The Sortino Ratio, which assesses downside risk, 

exhibits a comparable pattern.  At H=1, RAGe-ENS 

achieves a score of 4.34, indicating superior risk-adjusted 

returns.   The Hit Rate for RAGe-ENS consistently exceeds 

52%, indicating its ability to accurately predict price 

movements.   Furthermore, RAGe-ENS has a significantly 

reduced maximum drawdown (MaxDD), indicating superior 

capital preservation capabilities. 

Figure 1 visually corroborates these findings, particularly 

by illustrating the significant disparity in Sharpe Ratios near 

the H=1 horizon.   The ensemble's exceptional and consistent 

performance is mostly because to its capacity to integrate the 

advantages of various models and adjust to fluctuating 

market conditions via its dynamic weighting mechanism. 

 

Figure 1. Model Performance Comparison (H=1, 4-hour horizon) 

 

Figure 2 presents a heatmap illustrating that RAGe-ENS 

consistently surpasses all other evaluated horizons.  This 

demonstrates its efficacy across all horizons.  The heatmap 

indicates that RAGe-ENS maintains elevated Sharpe ratios 

at H=1 (2.95), H=3 (1.70), and H=6 (1.86).  Conversely, 

other models exhibit a significant decline in performance 

over extended periods. 
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Figure 2. Sharpe Ratio Heatmap Across Models and Horizons 

Figure 3 illustrates the risk-return attributes of the models 

by graphing Sharpe ratios versus maximum drawdowns for 

all models at H=1.  The scatter figure indicates that RAGe-

ENS exhibits the optimal risk-return trade-off.  The top-right 

quadrant exhibits the highest Sharpe ratio (2.95) and the 

lowest maximum drawdown (-0.092).  This position 

demonstrates superior risk-adjusted returns compared to 

alternative models, which either exhibit lower Sharpe ratios 

or greater maximum drawdowns. 

 

Figure 3. Risk-Return Profile Comparison (H=1) 
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4.2. System Dynamics Features Impact 

Incorporating System Dynamics (SD) elements into a 

model significantly enhances its performance, particularly 

across short to medium time horizons.  This illustrates their 

significance in capturing the nuanced aspects of market 

microstructure.   The incorporation of SD traits results in 

significant alterations, as illustrated in Table 2 and Figure 4. 

Table 2. System Dynamics Features Impact on Performance 

Scenario H Sharpe Sortino MaxDD Improvement Scenario 

NoSD 1 0.677 0.943 -0.21 0.00% NoSD 

WithSD 1 0.808 1.136 -0.123 19.40% WithSD 

NoSD 3 -0.283 -0.393 -1.253 0.00% NoSD 

WithSD 3 -0.032 -0.046 -0.892 88.60% WithSD 

NoSD 6 0.165 0.254 -2.018 0.00% NoSD 

WithSD 6 0.017 0.026 -1.541 -89.50% WithSD 

 

Figure 4 provides a clear visual representation of these 

findings, showing the dramatic improvements at H=1 and 

H=3, while highlighting the challenges at longer horizons. 

 

Figure 4. System Dynamics Features Impact on Performance 

 

The SD features, such as "RiskIndex," "CarryFlow," 

"CapIn," "CapOut," "FlowPressure," "FairValue_px," and 

"Mispricing," are designed to simulate the feedback loops 

and non-linear interactions occurring inside the financial 

system.   Figure 5 illustrates that these characteristics 

provide a theoretical foundation for comprehending market 

dynamics.  Their empirical contribution demonstrates their 

significance in high-frequency trading. 
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Figure 5. System Dynamics Features: Theoretical Importance and Market Impact 

4.3. Cost Robustness Analysis 

An essential component of any high-frequency trading 

strategy is its ability to manage transaction costs, which can 

diminish earnings. Table 3 and Figure 6 demonstrate that the 

RAGe-ENS framework has considerable resilience to 

fluctuations in transaction costs. 

Table 3. Cost Robustness Analysis (H=1) 

Model CostPips Sharpe Sortino Performance 

RAGe-ENS 0.5 3.08 4.52 Excellent 

RAGe-ENS 1 2.95 4.34 Excellent 

RAGe-ENS 2 2.71 3.98 Strong 

RAGe-ENS 3 2.46 3.62 Strong 

XGB 0.5 1.68 2.35 Good 

XGB 1 1.64 2.28 Good 

XGB 2 1.55 2.16 Moderate 

XGB 3 1.46 2.04 Moderate 

 

This table presents the Sharpe and Sortino Ratios for the 

RAGe-ENS and XGBoost models at H=1, across varying 

transaction costs ranging from 0.5 to 3.0 pips. This 

demonstrates their strength. 

The RAGe-ENS model exhibits a robust Sharpe Ratio of 

2.46, indicating its capacity to generate substantial alpha 

even under adverse trading conditions. This remains 

accurate even when the transaction fee is elevated at 3.0 pips. 

This discovery is significant for practical application, as 

transaction costs in the actual world are frequently 

substantial. 

Conversely, the XGBoost model exhibits a degree of 

stability; but, its performance deteriorates more rapidly as 

expenses increase. The Sharpe Ratio for XGBoost decreases 

to 1.46 at 3.0 pips, still positive however significantly lower 

than that of RAGe-ENS. The superior cost robustness of 

RAGe-ENS can be attributed to its enhanced signal quality 

and more efficient trading decisions, which generate 

sufficient revenue to comfortably offset transaction costs. 

Figure 6 distinctly illustrates the response of both models 

to increased transaction costs, indicating that RAGe-ENS 

exhibits greater resilience. 
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Figure 6. Cost Robustness Analysis (H=1) 

 

4.4. Theoretical Implications and Practical Significance 

The findings of this research have significant theoretical 

and practical ramifications. The accurate modeling and 

predictive use of complex, non-linear market feedback loops 

is supported by the successful integration of System 

Dynamics features into a multi-modal machine learning 

framework. Compared to standard technical indicators, the 

identified SD features offer a more causally-driven and 

nuanced understanding of market dynamics. 

One reliable and highly successful method for trading 

currencies quickly is the RAGe-ENS framework.   In real-

world algorithmic trading systems, it is a good option due to 

its greater risk-adjusted returns and capacity to manage 

transaction costs.   Because the ensemble can adjust to 

various regimes, it can also adjust more effectively to 

shifting market conditions, which is very advantageous in 

financial markets that move quickly. 

Because it may reliably produce alpha throughout a range 

of time periods, particularly at the H=1 (4-hour) level, 

institutional investors and quantitative hedge funds have 

additional options for enhancing their trading tactics. 

Because of its cost robustness, the framework may be 

applied to trading settings with high costs, making it suitable 

for a variety of market players with varying cost structures. 

4.5. Limitations and Future Research Directions 

The results are promising; nonetheless, several issues 

require attention. The research is confined to EURUSD 

currency pairs, and its relevance to other currency pairs or 

asset classes remains unassessed.   The System Dynamics 

features exhibit variable outcomes across extended time 

frames (H=6), indicating that their efficacy may be 

contingent upon the temporal context. 

Future study may investigate the extension of the RAGe-

ENS framework to more currency pairs, the augmentation of 

supplemental System Dynamics elements, and the 

examination of more sophisticated regime recognition 

algorithms. Furthermore, the integration of other base 

models and the exploration of diverse ensemble weighting 

methodologies may provide additional insights into the 

optimal configuration of the proposed framework. 
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5. Conclusions 

In this paper, we propose an innovative multi-modal 

learning paradigm for high-frequency foreign exchange 

trading by integrating the features of System Dynamics as 

well as an Regime-Adaptive Gradient Ensemble (RAGe-

ENS)-based modelling. Comprehensive comparison on 

variable horizons of forecasting as well as multiple cost 

functions of trading demonstrates the effective performance 

of the newly-imported methodology. 

5.1. Superior Performance of RAGe-ENS Framework 

The empirical findings show the outstanding performance 

of the RAGe-ENS network on all the measured criteria and 

horizons. At the crucial 4-hour forecasting horizon (H=1), 

the RAGe-ENS network achieves outstanding 2.95 Sharpe 

ratio, an 80% improvement on the best individual model 

(XGBoost at 1.64 Sharpe ratio). Its tremendous lead 

performance persists on larger horizons as well, where 

Sharpe ratios of 1.70 at H=3 and 1.86 at H=6 indicate the 

network's stability as well as persistence. 

Its outstanding performance of the ensemble could be 

ascribed to its novel principles of designs as follows: 

• Dynamic weighting mechanism adaptable for 

fluctuated market cases 

• Regime detection ability for finding the best trading 

regimes 

• Adaptive thresholding for adjusting signal 

generation according to volatility of the market 

Those aspects cumulatively allow the scheme to take 

advantage of the complementary properties of 

heterogeneous base models as well as overcome their single 

ones. 

5.2. Critical Impact of System Dynamics Features 

Inclusion of System Dynamics features is an important 

development in high-frequency trading technique. Also 

evident in the empirical data is the noteworthy improvement 

of performance when SD features are included: 19.4% boost 

in Sharpe ratio when H=1 and remarkable 88.6% increase 

when H=3. It confirms the theoretical model predicting 

market macrostructure could indeed be captured by way of 

feedback loops as well as non-linear interactions. 

• Most significant SD features are: 

• RiskIndex (25% theoretical relevance), 

summarizing multi-factor risk indicators 

• CarryFlow (20% relevance), capturing interest rate 

differential dynamics 

State variables (CapIn, CapOut, FlowPressure) add up to 

40% of the theoretical relevance, showing their significance 

in modeling capital flow dynamics. 

Those features allow richer, causally-motivated 

explanation of market movements beyond the realm of 

technical indicators. 

5.3. Practical Viability and Cost Robustness 

An important discovery is the robustness of the frame to 

transaction costs, a key variable on the practicality of trading 

application. RAGe-ENS has an impressive Sharpe ratio of 

2.46 at extreme costs as high as 3.0 pips, showing its 

practical potential for institutional application. Its cost 

robustness far surpasses the single models individually 

where XGBoost falls as low as 1.46 Sharpe at the 

comparable cost. 

Its capacity for providing reliable alpha irrespective of the 

cost structure renders it an applicable solution for all market 

players ranging between the high-frequency trading players 

and the institutional investors who vary in their costs. Its 

practical applicability coupled with higher risk-adjusted 

returns makes it an attractive solution for practical 

algorithmic trading applications. 

5.4. Theoretical Implications 

5.4.1. Multi-Modal Learning in Financial Markets 

It supports the use of multi-modal machine learning 

strategies for financial market data by showing how the 

combination of different model structures (gradient 

boosting, transformers, LSTMs) with regime-weighting 

improves on single models. It implies financial market 

forecasting gains an advantage through the use of ensemble 

methods capable of adapting dynamically between regimes. 

5.4.2. System Dynamics in Financial Modeling 

Successful integration of System Dynamics 

characteristics within machine learning models presents 

fresh prospects for financial modeling. It advances beyond 

the purely statistical recognition of patterns in order to bring 

in aspects of the theory of economics as well as the behavior 

of the system so as to avoid holistic market dynamics. It 

presents a paradigm change from technical analysis within 

the technical realm towards theory-based system-oriented 

methods. 
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5.4.3. Regime Adaptation in Ensemble Methods 

Regime-adaptive characteristic of the RAGe-ENS 

algorithm resolves an inherent problem of financial machine 

learning: market non-stationarity. Adapting model weights 

at each time point according to determined market regimes, 

the algorithm reveals higher flexibility for the regime-

adaptive methods compared to static ensembles, as the 

example for the development of the next regime-adaptive 

ensemble learning. 

5.5. Practical Contributions 

5.5.1. Institutional Trading Applications 

Superior performance characteristics and robustness on 

costs make the Framework extremely well-suited for 

institutional applications in trading. Stimulation of robust 

consistent alpha generation in varied market states as well as 

in different costs structures translate into a competitive edge 

for quantitative hedge funds, proprietary trading groups as 

well as institutional investors who desire trading strategies 

improvement. 

5.5.2. Risk Management and Capital Preservation 

Low maximum drawdown (-0.092 at H=1) and high 

Sortino ratios (4.34 at H=1) of the framework indicate high 

risk management ability. Such risk-adjusted performance is 

of high value for institutional use where capital preservation 

on the downside is the highest priority. That makes the 

framework novel for risk-averse institutional investors. 

5.5.3. Scalability and Implementation 

The modular constitution of the RAGe-ENS system 

enables deployment on multiple asset classes as well as on 

higher-frequency data. The System Dynamics aspects are 

applicable to different currency pairs as well as financial 

assets, and the ensemble approach accepts the inclusion of 

new base models as they develop. 

5.6. Current Limitations 

Few limitations need to be noted. It only includes the 

study of EURUSD currency pairs exclusively, so the validity 

for application on other pairs of currencies or asset classes 

has not been tested. Also, the System Dynamics features 

exhibit inconclusive findings for the long horizons (H=6), so 

their performance could be horizon-sensitive and could use 

tuning for long-term forecasting. 

5.7. Future Research Opportunities 

Future research should explore several promising 

directions: 

• Multi-Asset Extension: Applying the model to 

additional currency pairs, equity indices, and 

commodity markets in order to cross-verify its 

applicability on diverse assets. 

• Advanced System Dynamics: Creating more 

features of SD that reflect more advanced market 

microstructure features, such as order flow 

dynamics, market maker activities, as well as cross-

asset spillover effects. 

• Advanced Regime Detection: Examining higher-

level regime detection processes, such as regime 

identification using machine learning and analysis 

at multiple regimes. 

• Other Base Models: Investigating the combination 

of some other base models, such as deep learning 

models, attention mechanisms, as well as 

reinforcement learning methods. 

• Real-Time Execution: Creating real-time execution 

plans capable of digesting high-frequency streams 

of data and delivering low-latency trading signals. 

5.8. Final Remarks 

This work reveals the ability of regime-adaptive 

ensemble methods integrated with System Dynamics 

features for the improvement of high-frequency trading 

performance in the foreign exchange market. The RAGe-

ENS system delivers higher risk-adjusted returns with the 

feasibility of practical applicability under practical trading 

environments. The theoretical implications enrich the 

knowledge about the application of multi-modal machine 

learning for understanding financial market behavior. Its 

practical implications serve as the basis for institutional 

trading applications. 

The system's success confirms the value of importing 

both economic theory and system behavior into the machine 

learning paradigm, going beyond purely statistical 

formulations towards more integrated, theory-based 

solutions. With continuing evolution of financial markets 

toward increasing complexity, the types of multi-modal 

formulations capable of learning about varying 

circumstances will enjoy ever-increasing relevance for 

algorithmic trading competitive advantage. 

The results of this work offer a clear basis for future 

research on adaptive ensemble learning, System Dynamics 
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modeling for finance applications, as well as applications of 

multi-modal machine learning for high-frequency trading. 

Practical validity established through the demonstration of 

cost robustness analysis implies the latter could now be 

implemented in the field and bring substantial value to 

institutional trading operations. 
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