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Abstract 

This study addresses the interaction between IoT devices and their physical environment, highlighting its role in minimizing 

delays in IoT applications. The core challenge lies in scheduling IoT requests and efficiently allocating them to Fog and 

Cloud resources while ensuring fault tolerance. To tackle these issues, an intelligent optimization method based on the Plant 

Hormonal Defense Optimization (PDO) algorithm is proposed. The PDO algorithm, enhanced by applying penalties to 

restrict infeasible solutions, offers a high-quality solution within a reasonable computation time. The method's performance 

is evaluated using key metrics, such as average total delay in relation to data volumes, the number of lost requests, the delay 

difference between Fog and Cloud layers when altering processing speeds in the Fog layer, the 90th percentile delay as the 

number of servers in the Fog layer changes, and both Fog and Cloud breakpoints.The PDO algorithm is tested in a simulated 

environment that mimics real-world dynamics. Comparative analysis shows that the proposed method reduces delays by 

23.84% to 48.51% when compared to other algorithms, demonstrating its superior performance. 
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1. Introduction 

The Internet of Things (IoT), as an emerging technology, 

is poised to significantly impact our lives in the near future. 

This technology facilitates communication between various 

objects equipped with sensors and smart devices, allowing 

data and information collected by these objects to enhance 

daily life and provide better services to users. According to 

forecasts, the IoT is expected to grow exponentially in the 

coming years, driven by technological advances, increasing 

societal needs, and the vast potential it offers to both 

individuals and businesses. In 2014, the European Union 

launched research and innovation programs focused on IoT, 

setting specific goals to be achieved by 2020. This reflects 

the importance organizations place on IoT development and 

optimization, particularly in Europe, where there is a strong 

belief in the transformative potential of this technology [1]. 

Achieving IoT's full potential requires addressing critical 

challenges, such as optimizing request scheduling to reduce 

delays and energy consumption. Integrating cloud 

technologies, big data, and next-generation networks like 5G 

will also play a crucial role in realizing these goals, 

ultimately leading to improved services, resource efficiency, 

and the optimal use of IoT technology. IoT is both a concept 

and a paradigm that is increasingly present across various 

environments, encompassing both wireless and wired 

connections, and utilizing unique object addressing 

schemes. These features enable objects to interact and 

collaborate with other devices, facilitating the creation of 

new applications and services aimed at achieving common 

goals. However, there are numerous challenges in research 

and development as we strive to create an intelligent world. 

The convergence of real, digital, and virtual worlds is 

transforming domains such as energy, transportation, and 

smart cities, creating intelligent environments. The purpose 

of IoT is to allow objects to connect at any time, in any 

location, to any other object, entity, or human being. This 

connectivity, ideally achieved through any path, network, or 

service, defines the IoT [2-5]. A key distinction between fog 

computing and cloud computing is fog’s proximity to end 

users. In fog computing, services can be hosted on edge 

devices, such as access points, routers, switches, base 

stations, or even end-user devices. By bringing computation 

closer to the edge of the network, fog computing helps to 

address concerns about delays in cloud computing. The 

characteristics of fog computing are outlined in [6-8]. This 

research aims to model the problem of scheduling IoT 

requests from end devices and allocating them to appropriate 

resources in fog and cloud environments. We employ Integer 

Linear Programming (ILP) to model the minimization of 

service time and energy consumption for IoT requests. To 

achieve a high-quality practical solution within reasonable 

computational time, we propose a heuristic approach based 

on the Plant Hormonal Defense Optimization (PDO) 

algorithm. Plants use various defense mechanisms, 

including chemical compounds. For instance, when plants 

are attacked by pests or subjected to stressors such as 

drought or microbial infection, they release volatile organic 

compounds that trigger physiological responses in 

neighboring plants. Valdez et al. introduced a new 

biologically-inspired optimization technique based on this 

plant defense system, using the predator-prey model 

proposed by Lotka and Volterra. When a plant detects the 

presence of an invasive species, it initiates a chain of 

chemical reactions, releasing byproducts into the 

atmosphere that attract natural predators. In this paper, we 

propose a hormonal-based algorithm for optimization. The 

PDO algorithm aims to minimize delay and power 

consumption while ensuring that infeasible solutions are 

eliminated early in the process. This reduces the likelihood 

of selecting impossible solutions when generating new ones. 

The performance of the PDO algorithm is evaluated using a 

network simulator to assess its impact on delay and energy 

consumption [9-12]. Additionally, the proposed method is 

validated through the optimization of several mathematical 

functions, and its performance is statistically compared with 

other meta-heuristic optimization techniques. 

The research method employed in this study is practical. 

It is based on the results of fundamental research, aimed at 

enhancing and refining behaviors, methods, tools, products, 

structures, and patterns used by human societies. The goal of 

applied research is to develop practical knowledge within a 

specific field. 

2. Research Literature 

2.1. Defining the Internet of Things 

The Internet of Things (IoT) is not a single technology 

but a concept in which numerous objects are connected and 

activated. For example, streetlights connected in a network 

or objects embedded with sensors, image recognition, 

augmented reality, and near-field communication can make 

decisions related to positioning, resource management, and 

new services. These advancements create numerous 

business opportunities while also increasing the complexity 

of information technology. Fields such as distribution, 
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transportation, logistics, reverse logistics, and service 

environments are becoming more interconnected as 

information and "objects" interact, leading to the creation of 

new business processes or significantly more efficient and 

profitable entities. 

 

Figure 1. Factors going toward integrating and changing cloud, pipe, and technologies of the device [1] 

The Internet of Things (IoT) offers a solution-based 

integration of information technology, encompassing both 

hardware and software used for data storage, retrieval, and 

processing, as well as communication technologies like 

electronic systems that facilitate interaction between 

individuals or groups. The rapid convergence of IT and ICT 

is taking place across three layers of technological 

innovation: cloud, data, and communication infrastructures 

(including pipes, networks, and devices), as shown in Figure 

1 [1]. 

2.2. Security in IoT 

Several advancements are necessary to establish a secure 

Internet of Things. Among the key concerns are: 

DDOS/DOS Attacks: While these attacks are well 

understood in the context of the current Internet, the IoT is 

also susceptible. Specific technologies and mechanisms 

must be implemented to protect essential infrastructures 

such as transportation, energy, and city systems from being 

disabled or compromised. 

Threat Detection and Resilience: Robust systems are 

required to detect and mitigate specific IoT threats, including 

compromised nodes, malicious code, and hack attacks. 

Recovery strategies and resilience measures should be 

developed to counteract these threats effectively. Tool and 

Technique Awareness: Tools and techniques to monitor, 

manage, and secure IoT-based infrastructures need to be 

developed. These improvements should empower operators 

to protect IoT systems throughout their lifecycle and assist 

in adopting the most appropriate security measures during 

attacks. Access Controls: The IoT necessitates a range of 

access control mechanisms and licensing schemes tailored to 

support diverse user models. The heterogeneity of devices 

and gateways demands new lightweight access control 

designs. Autonomous Operation: The IoT must be capable 

of operating independently without human intervention. To 

achieve this, new technologies like machine learning will be 

crucial, enabling the development of a self-managed Internet 

of "smart" objects [3]. 

2.3. Computational Fog Environment 

Cisco has introduced the concept of fog computing, 

which represents an extension of cloud computing that 

pushes services towards the edge of the network. In this 

model, distributed and virtualized environments can be 

efficiently managed to provide computing and network 

services between sensors and cloud data centers. While 

cloud computing offers data storage, computing power, and 

software services to end users, fog computing provides 

several advantages, including proximity to users, geographic 

distribution, and support for mobility. A simple three-tier 

hierarchy is depicted in Figure 2, demonstrating these layers 

[13]. 
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Figure 2. Three-Tier Hierarchy 

In this framework, every intelligent device is connected 

to one of the fog machines. IoT environments consist of 

small, highly interconnected tools that operate through 

heterogeneous networks. The primary goal of such 

environments is to collect and process data from IoT devices 

to identify patterns, implement analyses, or optimize 

processes, ultimately enabling more intelligent and faster 

decision-making. The data in these environments can be 

classified into two categories: 

 Small Data: Data transferred and permanently 

recorded from intelligent IoT devices. 

 Large Flow or Big Data: Constant streams of data 

and knowledge stored and processed from 

centralized cloud storage [6]. 

2.4. Rsearch Background 

Numerous studies have focused on task scheduling in fog 

environments, a few of which are highlighted here: 

Bitam et al. proposed a bee-inspired algorithm to 

schedule tasks in fog computing environments. Their 

approach, based on the life of honeybees, utilized a linear 

combination of CPU runtime and memory allocation [14]. 

Al-Omari et al. explored error-tolerant models in IoT fog 

computing environments, proposing two methods: one 

without replication and one with minimal reproduction. In 

the non-replication model, other nodes in the fog 

environment replace the faulty node. Their model was 

analyzed in terms of energy consumption and running time 

[15]. Mohamed et al. studied error resilience in fog 

computing for smart city applications, emphasizing the 

reliability and robustness of IoT-based fog environments. 

Their research aimed to create a more reliable fog computing 

environment for smart city applications [16]. Yin et al. 

investigated task scheduling and resource allocation in fog 

computing for intelligent manufacturing. The study 

proposed a scheduling algorithm to ensure task completion 

and simultaneous processing, introducing a resource 

reallocation mechanism to reduce processing delays. The 

results demonstrated a significant reduction in execution 

delays and improved task concurrency in fog nodes [17]. 

Nguyen et al. introduced evolutionary algorithms for 

optimizing task scheduling in cloud-fog computing 

environments. The architecture of fog computing aims to 

complement cloud computing to meet IoT demands. The 

study employed an improved Particle Swarm Optimization 

(PSO) algorithm, tested on 11 datasets of varying sizes, with 

experimental results showing a 15.11% performance 

improvement [18]. 

3. Methodology 

3.1. Proposed Method Framework 

This paper proposes a framework consisting of two main 

components: (1) an innovative algorithm based on Plant 

Defense Optimization (PDO) to minimize request delays, 

and (2) an error tolerance optimization mechanism for 

handling request responses. To address the challenge of 

minimizing request delays, we propose an approach inspired 

by plant defense mechanisms. In this model, a mobile or 

resident user sends a service request to a fog node located at 

the network's edge. The node then transmits the request data 

and parameters as tasks to a manager node (usually located 

farther from the user). The manager node divides the request 

into smaller tasks and runs the PDO algorithm to determine 

the most optimized scheduling and allocation based on an 

objective function. To optimize energy management in fog 
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nodes, we combine runtime and energy consumption 

metrics. The manager node has access to all fog nodes and 

can distribute tasks to them. Finally, each fog node sends the 

results back to the manager node. 

The following assumptions are made in this study: 

Fog Node Concept: Each node refers to a fog computing 

node. 

Memory Constraints: Each node has memory limitations. 

Task Assignment: Multiple tasks can be assigned to a 

single node. 

Energy Consumption: Energy consumption per node is 

calculated based on an established energy consumption 

model [18]. 

3.2. Hormonal defense algorithm 

Throughout evolution, plants have developed various 

mechanisms to combat stress, including microbial 

infections. One such mechanism involves activating 

signaling pathways that lead to the expression of defense-

related genes. 

Historically, classic hormones such as ABA, SA, ET, JA, 

GAs, auxins, BRs, and CKs have been studied mainly for 

their roles in plant growth and development. However, 

recent studies have highlighted their importance in plant 

interactions and pathogenesis. During a pathogen attack, 

plants rapidly reallocate cellular resources from growth 

processes to defense mechanisms. Some of the key 

hormones involved are: 

SA Hormone: The phenolic plant hormone salicylic acid 

(SA) is known for its role in thermogenesis, flowering, 

defense signaling, and systemic acquired resistance (SAR) 

[19]. Different plant species vary significantly in their 

endogenous levels of SA and responses to the hormone. For 

example, in tobacco (Nicotiana tabacum) and Arabidopsis, 

baseline SA levels are low (approximately 50 ng/g), but they 

can double during pathogenic infection. Genes related to the 

SA hormone are categorized into three groups, with new 

genes identified based on these relationships. 

(1) 

 

 

The parameters α, β, and the condition β<α are used to 

determine the genes related to the SA hormone. In this 

context, α and β represent key thresholds that influence gene 

expression levels. The weight factor (W) is applied to adjust 

the influence of different genes, while r represents random 

numbers used to introduce variability and simulate the 

stochastic nature of biological processes. These parameters 

collectively help model the complex dynamics of gene 

regulation in response to the hormone SA. 

3.3. JA A Central Node In Plant Defense Signaling 

Network 

JA and its metabolites, collectively known as jasmonates 

(JAs), are important fat-derived regulators that play a 

fundamental role in defending plant growth processes [12]. 

One of the best examples to consider in the field of 

defense-related signal interference is the interaction between 

the SA and JA response paths [11]. Although research 

suggests that SA and JA routes work in contrasting ways, 

positive interactions have also been reported. For example, 

biosynthesis of JA in mutated plants is accompanied by a 

reduction in hydroperoxide lyase from OsHPL3 at the same 

time as an increase in the levels of SA. To simulate this 

approach in plants, we first select several genes from the SA 

family. These genes are combined with a weight less than JA 

genes (w5>w4) and then the new genes replace the previous 

genes and the relationship (2) is defined. This action applies 

to a small number of SA populations. 

(2) 

 

3.4. ET Classic Defense Hormone 

ET is one of three classic defense hormones and is one of 

the key components of the hormonal composition released 

in the pathogen attack. Although there are exceptions, it is 

widely accepted that ET works with JA to strengthen 

immunity against necrotroph pathogens. Hormonal 

measurements showed that the ET pathway is active in 

sensitive plants but not active in resistant plants [9]. Thus, 

members of the ET family are combined with the JA family 

(relationship 3) as well as members of the JA family are 

merged with the ET family (relation 3). 

(3) 

 

(4) 
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3.5. Hormone ABA 

Compared to SA, JA, and ET, the role of the ABA 

hormone in the plant's innate immunity is less well-known. 

Although the positive and negative effects of ABA on 

disease resistance have been reported, ABA acts mainly as a 

negative regulator of immunity [10]. Infection is usually 

associated with widespread reprogramming of ABA genes 

and biosynthesis and suggests that these pathogens have 

changed the course of rice ABA to cause disease. Therefore, 

the following mutations occur on the number δ percent of the 

population: 

(5) 

 

On the other hand, the lines for the mitogen-activated 

protein kinase OsMPK6 have been silenced by ABA, which 

generates ET too much and further resistance to M. oryzae. 

This approach indicates that the number of ETs is increased 

by the following relation, and the relation (6) is used to 

generate ET. 

(6) 

 

 

 

Figure 3. Flowchart PDO 

3.6. System and Work Model 

Table 1 provides an overview of the symbols used in the 

description of the algorithm, along with their corresponding 

definitions. The core approach of the proposed method is 

outlined as follows: 

The proposed method aims to address the problem of 

minimizing both demand delay and energy consumption in 

cloud-fog computations. To achieve this, a new nature-

inspired optimization approach, called the Plant Defense 

Optimization (PDO) algorithm, is introduced. This approach 

optimizes response delay time and energy cost to meet user 

demands efficiently. We evaluate the effectiveness of the 

proposed PDO-based optimization approach by comparing 

its performance to other existing methods, analyzing its 

efficiency in solving the demand-delay and energy 

consumption problems. 

nG G w r  
r r r

1 1 ( )ET ET ET

nG G w r G G    
r r r rr
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Table 1. The Signs Used Along with Their Definitions 

sign Definition sign Definition 

N Number of requests or tasks TR Get results 
R Request EC(x) [J] Electric energy consumption per joule 
RK Task K from R's request z Additional information sent to the Admin node 
FN Fog Mode PI Input Module Electrical Power 
Admin Manage Mode PO Output Module Electrical Power 
qt Average wait time in queue PS[W] Electric power per watt for data storage 
CET Processing time ES Electric power consumption 
TS Sent Time   

 

4. Findings and Results 

4.1. Evaluation Parameters 

4.2. Evaluation Parameters for the Plant Defense 

Algorithm in Application Processing Optimization 

These parameters focus on assessing the performance of 

the algorithm and its ability to reduce submission delays. 

Average Total Delay vs. Data Volume: 

This parameter measures the average total delay in 

responding to IoT requests relative to the total data volume 

transmitted. It is typically used to indicate how much the 

delay has been reduced as the data volume increases. 

Number of Missed Requests vs. Average Request Size: 

This parameter evaluates the number of requests lost due 

to network or server resource issues, in relation to the 

average request size. It shows how the Plant Defense 

Algorithm reduces the number of lost requests. 

Ninety-May Delay Relative to Cloud: 

This parameter measures the delay caused by the ninety-

may node compared to the average delay caused by cloud 

nodes. It illustrates the performance difference between May 

nodes and cloud nodes in terms of delay reduction. 

Fog-to-Cloud Delay by Changing Fog Layer 

Processing Speed: 

This parameter compares the delays between fog and 

cloud under varying processing speeds in the fog layer. 

Ninety-May Delay vs. Cloud by Changing Server 

Count in Fog Layer: 

This parameter compares the delays between May nodes 

and cloud nodes by adjusting the number of servers in the 

fog layer. 

Fog Breakpoints and Cloud Computing: 

These parameters define the points where the Plant 

Defense Algorithm fails, resulting in the computation being 

transferred to the cloud. 

Evaluation Parameters for the Plant Defense Algorithm in 

Application Fault Tolerance 

The following parameters are used to assess the fault 

tolerance of requests within the Plant Defense Algorithm: 

Guarantee Ratio (GR): 

The ratio of tasks guaranteed to be completed. 

Accepted Task Ratio (RTA): 

The ratio of tasks accepted by the system for processing. 

Number of Active Fog Nodes (NAF): 

The total number of active fog nodes available for task 

processing. 

Active Fog Time (FAT): 

The duration for which fog nodes remain active during 

task execution. 

Task Execution Time Ratio over Active Fog Nodes 

(RTF): 

The ratio of task execution time distributed across active 

fog nodes. 

Degree of Non-Equilibrium Loading Tasks (DIB): 

A measure of how unbalanced the task distribution is 

across fog nodes. 

4.3. Evaluation of the proposed algorithm for minimizing 

the delay of requests 

The experiment consists of a set of 16 servers with an 

average processing speed of 500 packs per second and 

widely distributed from 50 to 1000 packs per second. The 

average delay of servers is set to 5 milliseconds per package. 

It is also distributed from 1 millisecond to 9.7 milliseconds. 

A total of 100 requests were used in the test. Priorities are 

distributed uniformly from 1 to 16. The runtime requirement 

is set to an average of 400 seconds with a 50-hour variance. 

Initially, the average size of the data starts from a small 

value, such that it reduces the deadline for requests. No 

request misses its execution deadline. Then, the average data 

size increases to see its effect on total delay and number of 

missed requests. Figure 3 and Figure 4 show the average 
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total delay and the number of requests lost against the 

average size of requests. PDO shows less total delay than 

other algorithms. The results of WFQ and PSQ are very 

close to each other because the allocation of requests in the 

resources is achieved based on the priority of both 

algorithms, however, the submission is different. RR 

represents the highest latency time, due to RR procedure, 

without consideration of request priorities. It can also be 

observed that PDO holds the record with no missing requests 

for longer than other algorithms. However, at an average of 

6,500 packets, PDO cannot guarantee that all request 

deadlines are met because their service delays increase and 

their deadlines become critical. It is important to note that in 

all data, using PDO, can provide a practical scheduling 

solution in which all request deadlines must be met. 

However, simulation results show that it is not possible to 

overwrite all requests. This is shown in Figure 3 between 

6000 and 8000, at average data size. After 8,000 packages, 

it becomes impossible to find the answer, and therefore, it is 

impossible to find a practical scheduling program. This is 

shown in the simulation because the actual delay of each 

package can be different from the average delay. 

 

Figure 4. Average total delay against data volume 

 

 

Figure 5. The number of lost requests versus the average size of the requests 

4.4. Dynamic programming 

In another experiment, 16 servers and 500 requests were 

used to assess the delay in processing applications. The 

requests were generated based on a Poisson distribution with 

an average input rate of one request per second. Priorities 

were assigned uniformly between 1 and 16. The average 

deadline for requests was set at 200 seconds, with a variance 

of 50 seconds. Resources were scheduled at 10-second 

intervals, and the average request size ranged from 1,000 to 

10,000 packets. Figure 5 and Figure 6 depict the overall 

average delay and the number of lost requests in relation to 

the average data size. The Plant Defense Optimization 

(PDO) algorithm demonstrated the best overall delay 

performance compared to other algorithms. The results of 

WFQ and PSQ were very close to each other, but the 
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performance gap widened as the average data size increased. 

Figure 5  also shows that when the average data size is below 

5,000 packets, PDO is able to process nearly all requests. At 

an average data size of 6,000 packets, PDO experienced no 

lost requests, while WFQ and PSQ lost approximately 10% 

and 6% of requests, respectively. The RR algorithm also 

exhibited a similar loss pattern. Beyond this point, as 

requests become more critical, the number of unprocessed 

requests rises. In the case of the PDO algorithm, lost requests 

begin to appear once the data size exceeds 6,000 packets. 

However, even in this scenario, PDO still outperforms the 

other three algorithms in terms of minimizing lost requests. 

 

Figure 6. General average delay versus data volume 

4.5. Comparison of cloud and hybrid architectures 

The purpose of this study is to assess the service delays 

associated with resources that possess both cloud computing 

and fog computing features. Generally, cloud resources are 

classified as powerful due to their high processing 

capabilities, but they are also associated with higher average 

network transmission times and latency. On the other hand, 

fog resources, while having more limited processing power, 

are located closer to the network edge and therefore offer 

lower average delays. An experiment was designed to 

evaluate whether it is more efficient to use powerful cloud 

resources or to embed lower-power resources within the fog 

layer. To optimize response times and minimize delays in 

handling requests, the formulated model considers three key 

parameters: 

- Average delay ratio, 𝛿 ̅ 𝑓/𝛿 ̅𝑐 

- Processing speed ratio, 𝑃 𝑓/𝑃𝑐 

- Resource Count Ratio, 𝑁𝑓/𝑁𝑐 

The effect of each parameter on service delay is studied 

independently by fixing two of them and changing only one. 

The delay obtained by changing these parameters is 

evaluated against a system that has a Cloud feature. This 

cloud-based system is home to a set of 4 high-performance, 

5,000-pack/second-line servers. However, the average delay 

of these servers to 10 milliseconds per packet. To evaluate 

the delay, a total of 500 applications are used in this set of 

experiments. Their arrival follows the Poisson distribution 

with an average arrival time of 1 second. The delay is studied 

in comparison with the average size of the data, which varies 

from 1000 packages to 10,000 packages. 

4.6. Effect of delay mean ratio 

In this experiment, the number of Meme servers is four 

times that of cloud 𝑁𝑓 /𝑁𝑐 = 4. Their processing power is 

only 10% cloud, 𝑃𝑓/𝑃𝑐 = 10%. The average delay ratio, 𝛿 

𝑓/𝛿𝑐, varies from 1%, 10%, 20%, 50%, and 85%. Figure 7 

shows the delay results and, as it is observed, an increase in 

the average delay ratio from 1% to 85% increases the delay 

until it reaches a point that passes through the fog lag. This 

indicates that the fog servers are far from edge devices and 

are closer to the fog servers. 
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Figure 7. Ninety-Me delay to the cloud 

4.7. The effect of the processing speed ratio 

In this experiment, the number of fog servers is four times 

the number of cloud servers, 𝑁𝑓/𝑁𝑐 = 4. Their average delay 

is 𝛿𝑓/𝛿𝑐 10%. The processing power, 𝑃𝑓/𝑃𝑐, varies to 3, 5, 

7, 10 and 20 percent. Figure 8 shows delay results. As the 

results presented in Figure 8 show, reducing the speed ratio 

of processing from 20% to 3% increases the fog latency until 

it reaches a point that crosses the cloud latency. This is 

caused by low-process haze servers. In this case, even if 

these resources are closer to the edge than the cloud 

resources, the fog will offer high delays due to its low 

processing capabilities. 

 

 

Figure 8. Fog-to-cloud delay by changing the processing speed in the fog layer 

4.8. The effect of the ratio of the number of sources 

In this experiment, The average delay of the May servers, 

is set to 10 percent of the mean cloud latency. The processing 

power of May servers is set to 10 percent of the features of 

cloud servers. The number of fog resources varies from 

cloud to 100%, 150%, 200%, 300%, 400%, 600% and 800%. 

Figure 9 shows the latency results for this experiment. As is 

evident from the test given in Figure 9, a decrease in the ratio 

of resources from 800% to 100% increases the fog delay 

until it reaches a point that passes through the cloud lag. This 

is because many foggy servers have very low resources. 
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Even if these resources are closer to the edge and have good 

processing capability, having fewer resources will adversely 

affect the delay. 

 

 

Figure 9. Until recently ninety-May compared to the cloud by changing the number of servers in the fog layer 

Another experiment was conducted to identify failure 

points based on three parameters: average delay, processing 

power, and number of resources. The average data size was 

set to 5,000 packets. Figure 10 illustrates the experimental 

results, showing the confluence point between fog delays 

and cloud delays. The testing reveals that, under certain 

conditions, a set of fog servers provides better latency 

performance than a set of cloud servers. For example, for a 

given average delay ratio and processing power ratio 

between fog and cloud servers, the graph shows the number 

of servers at which fog performs better than cloud, and vice 

versa. The three most recent experiments demonstrated that 

fog computations encounter a delay threshold due to high 

delays (Figure 7), limited processing power (Figure 8), and 

a low number of fog servers (Figure 9), at which point fog's 

delay becomes greater than cloud computing's delay. 

 

Figure 10. Foggy Breakpoints and Cloud Computing 
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Figure 11 represents the change in values of K (the weight 

of each part of the objective function). The form of 11-a 

shows the delay rate changes by changing its weight in the 

objective function, as it is shown, by increasing its weight, 

the value of the function F1 (the delay rate) also decreases. 

This is quite clear, because the more weight increases, the 

more fine increases (the algorithm moves to one-

dimensional), so it is expected to perform better for one part 

of the function. Figure 11 shows the same behavior for the 

second part of the function: energy consumption.  Here by 

increasing the weight of k2, the value of the second part of 

the objective function is decreased and then it is fixed. 

 

Figure 11. Changing K values on each part of the objective function 

4.9. Evaluation of proposed algorithm for application 

fault tolerance 

The experimental results in Table 2 show that the four 

algorithms of GRs are appropriate, but the DFTLA shows 

the best performance. The proportion of GR in NFTULA is 

relatively small. As mentioned, in NFTULA, the fault 

tolerance approach is not considered, so this is why the a 

decrease in GR in this algorithm compared to other methods. 

Because some tasks that can be performed successfully may 

be rejected by the system. For other algorithms, because they 

somehow take an error tolerance approach, GRs have been 

partially improved. 

Table 2. Evaluation Parameters 

Alg 

Metr. 
PDO SJD NO-FT 

GR 0.99 0.95 0.76 

RTF 0.88 0.81 0.51 

FAT (×106) 7.65 8.91 15.55 
DIB 0.18 0.16 0.08 

 

In the PDO approach, the Guarantee Ratio (GR) 

outperforms that of the SJD method, because in the PDO 

approach, not all nodes are used to store information. 

Instead, certain types of nodes have access to spine nodes, 

reducing energy consumption and ultimately improving the 

GR parameter. Energy consumption is also a key 

consideration, as the energy levels of fog nodes are limited 

and task scheduling must take this into account. In the PDO 

method, nodes are selected for processing that do not 

experience significant energy depletion during processing, 

thereby reducing the likelihood of task failure and increasing 

the GR. It is important to note that while the Resource Task 

Factor (RTF) parameter behaves similarly in both the PDO 

and SJD methods, the PDO method still produces better 

results overall. In contrast, the NO-FT method, which lacks 

an error control algorithm, performs significantly worse. 

Another evaluation parameter, the Fog Active Time (FAT), 

indicates the duration during which fog nodes are active. 

Since this parameter is closely related to the RTF, it is 

expected to yield similar results, as demonstrated in Table 2. 

The behavior of different methods regarding the FAT 

parameter is similar to their behavior with the RTF 

parameter. The final parameter in Table 2, the Degree of 

Imbalance (DIB), reflects the load distribution across the 

network. As shown, the load imbalance across various 

methods is relatively similar, except in cases where fault-

tolerant methods are not used. This is because, in most 

methods, tasks are chosen to ensure a balanced load 

distribution across the network. As the task request rate (sent 

by the user) fluctuates, the number of active fog nodes 
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(NAF) also changes. Figure 12 illustrates the NAF variations 

over time for different algorithms in environments of various 

sizes—small, medium, and large. The number of active fog 

nodes in each algorithm is closely tied to the number of tasks 

being processed. As shown in Figure 12, when a large 

number of tasks are present in the environment, the PDO 

algorithm increases the number of active nodes to meet task 

scheduling demands. 

 

Figure 12. NAF Distribution Over Time 

Another factor that affects NAF is a system error because 

if the node selected to process correctly processes the task, 

it does not require the choice of another ninety processors 

(activating another node). As mentioned above, in the PDO 

method, the load codes are selected which other nodes have 

access to. Therefore, data is available if it requires data. In 

the first 1000 seconds, algorithms in different environments 

have different behaviors, because initially the energies of 

noise are not reduced, fewer errors occur, and fewer jobs are 

posted. For example, in Figure 12, algorithms have 

performed better than SJD in terms of the NAF parameter in 

less than 1000 seconds, and over time this process is 

continued.RTA changes are shown over time in Figure 12. 

As shown in Figure 13, the RTA of the two other methods 

varies greatly in the first 1000 seconds and does not have 

uniform behavior, but slowly increases over time, eventually 

reaching GR. This means that when there are fewer active 

nodes in the environment, the cloud is not able to accept new 

tasks, but by increasing the active nodes, most accepted tasks 

will eventually be completed on time. On the other hand, at 

the beginning of the learning process of learning automata, 

since the automata have non-existent initial weight, the 

choice of ninety processors is merely random and the 

environment shows unexpected behaviors, but with time the 

automata shows more uniform behavior. However, since the 

model has been trained from the beginning in the PDO 

method, it has been better than the SJD method. 

 

Figure 13. RTA Distribution Over Time 
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5. Conclusion 

Among the various methods of modeling and 

optimization, the proposed algorithm based on Plant 

Hormonal Defense Optimization (PDO) has demonstrated 

significant improvements in performance. This approach 

utilizes the PDO algorithm, along with constraints that 

prevent impossible solutions, delivering high-quality, 

practical solutions within a reasonable computational time. 

To evaluate the performance of this algorithm, a set of 

evaluation parameters is used. These parameters include: 

average total delay relative to data volume, the number of 

lost requests, the delay of May nodes compared to cloud 

nodes, latency in May nodes relative to cloud nodes when 

processing speed changes in the fog layer, May node delay 

in comparison to cloud nodes by altering the number of 

servers in the May layer, and the breakpoints between May 

and Cloud. The results show that the PDO algorithm 

significantly reduces delays and energy consumption 

compared to other methods, making it a more efficient 

solution for managing IoT requests. Additionally, the PDO 

algorithm outperforms other approaches in fault tolerance 

evaluation metrics, such as Guarantee Ratio (GR) and 

Accepted Task Ratio (RTA). This method enhances the 

efficiency and utility of IoT, promoting better 

communication and the introduction of new services. 

Ultimately, the Internet of Things (IoT) offers a wide range 

of possibilities for improving everyday life. Its effects are 

substantial, from reducing energy consumption and 

improving healthcare services to increasing the efficiency of 

smart cities. These advancements demand further research in 

optimization and modeling to fully leverage this technology. 

The PDO algorithm has shown its potential as a key tool in 

this field, and with further optimization, it can significantly 

enhance the performance of IoT systems. In this context, 

optimal resource allocation is crucial. By incorporating the 

PDO algorithm into this process, the resource allocation 

system can be improved, leading to increased efficiency and 

effectiveness of IoT systems. Moreover, it is vital to consider 

the adaptability of this algorithm to different circumstances 

and environments. This flexibility allows the PDO algorithm 

to be applied in a variety of scenarios, boosting its efficiency 

and applicability in the IoT domain. Looking ahead, future 

research on IoT and its related challenges must focus on 

developing and optimizing algorithms and methods for 

resource management and productivity. The PDO algorithm 

represents an important step in this direction, offering an 

efficient and intelligent approach to managing IoT requests. 

It can serve as a powerful tool for improving the 

performance and efficiency of the Internet of Things. 
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