
Management Strategies and Engineering Sciences 2024; 6(3):76-90

Review Article

Minimizing The Delay and Energy Consumption in Cloud and

Fog Hybrid Environments Based on The Timing of Requests

in The IOT Using Plant Defense Optimization Algorithm

Mostafa Rezaeizadeh Roukerd1 , Mehdi Jafari Shahbaz Zadeh2 *, Mahdiyeh Eslami3
1. PhD Student, Department of Electrical Engineering, Kerman Branch, Islamic Azad University,Kerman, Iran.

2. Assistant Professor, Department of Electrical and Electronics Engineering, Kerman Branch, Islamic Azad university , Kerman,

Iran (Corresponding author).

3. Assistant Professor, Department of Electrical Engineering, Kerman Branch, Islamic Azad University , Kerman, Iran.

* Corresponding author email address: m-j-shahbazi@yahoo.com

Received: 2024-05-09 Reviewed: 2024-06-17 Revised: 2024-08-03 Accepted: 2024-08-16 Published: 2024-09-10

Abstract

This study addresses the interaction between IoT devices and their physical environment, highlighting its role in minimizing

delays in IoT applications. The core challenge lies in scheduling IoT requests and efficiently allocating them to Fog and

Cloud resources while ensuring fault tolerance. To tackle these issues, an intelligent optimization method based on the Plant

Hormonal Defense Optimization (PDO) algorithm is proposed. The PDO algorithm, enhanced by applying penalties to

restrict infeasible solutions, offers a high-quality solution within a reasonable computation time. The method's performance

is evaluated using key metrics, such as average total delay in relation to data volumes, the number of lost requests, the delay

difference between Fog and Cloud layers when altering processing speeds in the Fog layer, the 90th percentile delay as the

number of servers in the Fog layer changes, and both Fog and Cloud breakpoints.The PDO algorithm is tested in a simulated

environment that mimics real-world dynamics. Comparative analysis shows that the proposed method reduces delays by

23.84% to 48.51% when compared to other algorithms, demonstrating its superior performance.

Keywords: IoT, Optimization, Plant Defense Optimization (PDO), Fog Computing, Cloud Computing.

How to cite this article:

Rezaeizadeh Roukerd M , Jafari Shahbaz Zadeh M, Eslami M. (2024). Minimizing The Delay and Energy Consumption in Cloud and

Fog Hybrid Environments Based on The Timing of Requests in The IOT Using Plant Defense Optimization Algorithm Management

Strategies and Engineering Sciences, 6(3), 76-90.

https://orcid.org/2830-7080-0008-0009
https://orcid.org/0000-0002-1443-9730
https://orcid.org/0000-0003-1174-1595

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 77

1. Introduction

The Internet of Things (IoT), as an emerging technology,

is poised to significantly impact our lives in the near future.

This technology facilitates communication between various

objects equipped with sensors and smart devices, allowing

data and information collected by these objects to enhance

daily life and provide better services to users. According to

forecasts, the IoT is expected to grow exponentially in the

coming years, driven by technological advances, increasing

societal needs, and the vast potential it offers to both

individuals and businesses. In 2014, the European Union

launched research and innovation programs focused on IoT,

setting specific goals to be achieved by 2020. This reflects

the importance organizations place on IoT development and

optimization, particularly in Europe, where there is a strong

belief in the transformative potential of this technology [1].

Achieving IoT's full potential requires addressing critical

challenges, such as optimizing request scheduling to reduce

delays and energy consumption. Integrating cloud

technologies, big data, and next-generation networks like 5G

will also play a crucial role in realizing these goals,

ultimately leading to improved services, resource efficiency,

and the optimal use of IoT technology. IoT is both a concept

and a paradigm that is increasingly present across various

environments, encompassing both wireless and wired

connections, and utilizing unique object addressing

schemes. These features enable objects to interact and

collaborate with other devices, facilitating the creation of

new applications and services aimed at achieving common

goals. However, there are numerous challenges in research

and development as we strive to create an intelligent world.

The convergence of real, digital, and virtual worlds is

transforming domains such as energy, transportation, and

smart cities, creating intelligent environments. The purpose

of IoT is to allow objects to connect at any time, in any

location, to any other object, entity, or human being. This

connectivity, ideally achieved through any path, network, or

service, defines the IoT [2-5]. A key distinction between fog

computing and cloud computing is fog’s proximity to end

users. In fog computing, services can be hosted on edge

devices, such as access points, routers, switches, base

stations, or even end-user devices. By bringing computation

closer to the edge of the network, fog computing helps to

address concerns about delays in cloud computing. The

characteristics of fog computing are outlined in [6-8]. This

research aims to model the problem of scheduling IoT

requests from end devices and allocating them to appropriate

resources in fog and cloud environments. We employ Integer

Linear Programming (ILP) to model the minimization of

service time and energy consumption for IoT requests. To

achieve a high-quality practical solution within reasonable

computational time, we propose a heuristic approach based

on the Plant Hormonal Defense Optimization (PDO)

algorithm. Plants use various defense mechanisms,

including chemical compounds. For instance, when plants

are attacked by pests or subjected to stressors such as

drought or microbial infection, they release volatile organic

compounds that trigger physiological responses in

neighboring plants. Valdez et al. introduced a new

biologically-inspired optimization technique based on this

plant defense system, using the predator-prey model

proposed by Lotka and Volterra. When a plant detects the

presence of an invasive species, it initiates a chain of

chemical reactions, releasing byproducts into the

atmosphere that attract natural predators. In this paper, we

propose a hormonal-based algorithm for optimization. The

PDO algorithm aims to minimize delay and power

consumption while ensuring that infeasible solutions are

eliminated early in the process. This reduces the likelihood

of selecting impossible solutions when generating new ones.

The performance of the PDO algorithm is evaluated using a

network simulator to assess its impact on delay and energy

consumption [9-12]. Additionally, the proposed method is

validated through the optimization of several mathematical

functions, and its performance is statistically compared with

other meta-heuristic optimization techniques.

The research method employed in this study is practical.

It is based on the results of fundamental research, aimed at

enhancing and refining behaviors, methods, tools, products,

structures, and patterns used by human societies. The goal of

applied research is to develop practical knowledge within a

specific field.

2. Research Literature

2.1. Defining the Internet of Things

The Internet of Things (IoT) is not a single technology

but a concept in which numerous objects are connected and

activated. For example, streetlights connected in a network

or objects embedded with sensors, image recognition,

augmented reality, and near-field communication can make

decisions related to positioning, resource management, and

new services. These advancements create numerous

business opportunities while also increasing the complexity

of information technology. Fields such as distribution,

 Rezaeizadeh Roukerd at.el

 78

transportation, logistics, reverse logistics, and service

environments are becoming more interconnected as

information and "objects" interact, leading to the creation of

new business processes or significantly more efficient and

profitable entities.

Figure 1. Factors going toward integrating and changing cloud, pipe, and technologies of the device [1]

The Internet of Things (IoT) offers a solution-based

integration of information technology, encompassing both

hardware and software used for data storage, retrieval, and

processing, as well as communication technologies like

electronic systems that facilitate interaction between

individuals or groups. The rapid convergence of IT and ICT

is taking place across three layers of technological

innovation: cloud, data, and communication infrastructures

(including pipes, networks, and devices), as shown in Figure

1 [1].

2.2. Security in IoT

Several advancements are necessary to establish a secure

Internet of Things. Among the key concerns are:

DDOS/DOS Attacks: While these attacks are well

understood in the context of the current Internet, the IoT is

also susceptible. Specific technologies and mechanisms

must be implemented to protect essential infrastructures

such as transportation, energy, and city systems from being

disabled or compromised.

Threat Detection and Resilience: Robust systems are

required to detect and mitigate specific IoT threats, including

compromised nodes, malicious code, and hack attacks.

Recovery strategies and resilience measures should be

developed to counteract these threats effectively. Tool and

Technique Awareness: Tools and techniques to monitor,

manage, and secure IoT-based infrastructures need to be

developed. These improvements should empower operators

to protect IoT systems throughout their lifecycle and assist

in adopting the most appropriate security measures during

attacks. Access Controls: The IoT necessitates a range of

access control mechanisms and licensing schemes tailored to

support diverse user models. The heterogeneity of devices

and gateways demands new lightweight access control

designs. Autonomous Operation: The IoT must be capable

of operating independently without human intervention. To

achieve this, new technologies like machine learning will be

crucial, enabling the development of a self-managed Internet

of "smart" objects [3].

2.3. Computational Fog Environment

Cisco has introduced the concept of fog computing,

which represents an extension of cloud computing that

pushes services towards the edge of the network. In this

model, distributed and virtualized environments can be

efficiently managed to provide computing and network

services between sensors and cloud data centers. While

cloud computing offers data storage, computing power, and

software services to end users, fog computing provides

several advantages, including proximity to users, geographic

distribution, and support for mobility. A simple three-tier

hierarchy is depicted in Figure 2, demonstrating these layers

[13].

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 79

Figure 2. Three-Tier Hierarchy

In this framework, every intelligent device is connected

to one of the fog machines. IoT environments consist of

small, highly interconnected tools that operate through

heterogeneous networks. The primary goal of such

environments is to collect and process data from IoT devices

to identify patterns, implement analyses, or optimize

processes, ultimately enabling more intelligent and faster

decision-making. The data in these environments can be

classified into two categories:

 Small Data: Data transferred and permanently

recorded from intelligent IoT devices.

 Large Flow or Big Data: Constant streams of data

and knowledge stored and processed from

centralized cloud storage [6].

2.4. Rsearch Background

Numerous studies have focused on task scheduling in fog

environments, a few of which are highlighted here:

Bitam et al. proposed a bee-inspired algorithm to

schedule tasks in fog computing environments. Their

approach, based on the life of honeybees, utilized a linear

combination of CPU runtime and memory allocation [14].

Al-Omari et al. explored error-tolerant models in IoT fog

computing environments, proposing two methods: one

without replication and one with minimal reproduction. In

the non-replication model, other nodes in the fog

environment replace the faulty node. Their model was

analyzed in terms of energy consumption and running time

[15]. Mohamed et al. studied error resilience in fog

computing for smart city applications, emphasizing the

reliability and robustness of IoT-based fog environments.

Their research aimed to create a more reliable fog computing

environment for smart city applications [16]. Yin et al.

investigated task scheduling and resource allocation in fog

computing for intelligent manufacturing. The study

proposed a scheduling algorithm to ensure task completion

and simultaneous processing, introducing a resource

reallocation mechanism to reduce processing delays. The

results demonstrated a significant reduction in execution

delays and improved task concurrency in fog nodes [17].

Nguyen et al. introduced evolutionary algorithms for

optimizing task scheduling in cloud-fog computing

environments. The architecture of fog computing aims to

complement cloud computing to meet IoT demands. The

study employed an improved Particle Swarm Optimization

(PSO) algorithm, tested on 11 datasets of varying sizes, with

experimental results showing a 15.11% performance

improvement [18].

3. Methodology

3.1. Proposed Method Framework

This paper proposes a framework consisting of two main

components: (1) an innovative algorithm based on Plant

Defense Optimization (PDO) to minimize request delays,

and (2) an error tolerance optimization mechanism for

handling request responses. To address the challenge of

minimizing request delays, we propose an approach inspired

by plant defense mechanisms. In this model, a mobile or

resident user sends a service request to a fog node located at

the network's edge. The node then transmits the request data

and parameters as tasks to a manager node (usually located

farther from the user). The manager node divides the request

into smaller tasks and runs the PDO algorithm to determine

the most optimized scheduling and allocation based on an

objective function. To optimize energy management in fog

 Rezaeizadeh Roukerd at.el

 80

nodes, we combine runtime and energy consumption

metrics. The manager node has access to all fog nodes and

can distribute tasks to them. Finally, each fog node sends the

results back to the manager node.

The following assumptions are made in this study:

Fog Node Concept: Each node refers to a fog computing

node.

Memory Constraints: Each node has memory limitations.

Task Assignment: Multiple tasks can be assigned to a

single node.

Energy Consumption: Energy consumption per node is

calculated based on an established energy consumption

model [18].

3.2. Hormonal defense algorithm

Throughout evolution, plants have developed various

mechanisms to combat stress, including microbial

infections. One such mechanism involves activating

signaling pathways that lead to the expression of defense-

related genes.

Historically, classic hormones such as ABA, SA, ET, JA,

GAs, auxins, BRs, and CKs have been studied mainly for

their roles in plant growth and development. However,

recent studies have highlighted their importance in plant

interactions and pathogenesis. During a pathogen attack,

plants rapidly reallocate cellular resources from growth

processes to defense mechanisms. Some of the key

hormones involved are:

SA Hormone: The phenolic plant hormone salicylic acid

(SA) is known for its role in thermogenesis, flowering,

defense signaling, and systemic acquired resistance (SAR)

[19]. Different plant species vary significantly in their

endogenous levels of SA and responses to the hormone. For

example, in tobacco (Nicotiana tabacum) and Arabidopsis,

baseline SA levels are low (approximately 50 ng/g), but they

can double during pathogenic infection. Genes related to the

SA hormone are categorized into three groups, with new

genes identified based on these relationships.

(1)

The parameters α, β, and the condition β<α are used to

determine the genes related to the SA hormone. In this

context, α and β represent key thresholds that influence gene

expression levels. The weight factor (W) is applied to adjust

the influence of different genes, while r represents random

numbers used to introduce variability and simulate the

stochastic nature of biological processes. These parameters

collectively help model the complex dynamics of gene

regulation in response to the hormone SA.

3.3. JA A Central Node In Plant Defense Signaling

Network

JA and its metabolites, collectively known as jasmonates

(JAs), are important fat-derived regulators that play a

fundamental role in defending plant growth processes [12].

One of the best examples to consider in the field of

defense-related signal interference is the interaction between

the SA and JA response paths [11]. Although research

suggests that SA and JA routes work in contrasting ways,

positive interactions have also been reported. For example,

biosynthesis of JA in mutated plants is accompanied by a

reduction in hydroperoxide lyase from OsHPL3 at the same

time as an increase in the levels of SA. To simulate this

approach in plants, we first select several genes from the SA

family. These genes are combined with a weight less than JA

genes (w5>w4) and then the new genes replace the previous

genes and the relationship (2) is defined. This action applies

to a small number of SA populations.

(2)

3.4. ET Classic Defense Hormone

ET is one of three classic defense hormones and is one of

the key components of the hormonal composition released

in the pathogen attack. Although there are exceptions, it is

widely accepted that ET works with JA to strengthen

immunity against necrotroph pathogens. Hormonal

measurements showed that the ET pathway is active in

sensitive plants but not active in resistant plants [9]. Thus,

members of the ET family are combined with the JA family

(relationship 3) as well as members of the JA family are

merged with the ET family (relation 3).

(3)

(4)

5 4 ()JA SA JA

nG w G w r G G    
r r r rr

()JA JA JA ET

nG G w r G G    
r r r rr

()ET ET ET JA

nG G w r G G    
r r r rr

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 81

3.5. Hormone ABA

Compared to SA, JA, and ET, the role of the ABA

hormone in the plant's innate immunity is less well-known.

Although the positive and negative effects of ABA on

disease resistance have been reported, ABA acts mainly as a

negative regulator of immunity [10]. Infection is usually

associated with widespread reprogramming of ABA genes

and biosynthesis and suggests that these pathogens have

changed the course of rice ABA to cause disease. Therefore,

the following mutations occur on the number δ percent of the

population:

(5)

On the other hand, the lines for the mitogen-activated

protein kinase OsMPK6 have been silenced by ABA, which

generates ET too much and further resistance to M. oryzae.

This approach indicates that the number of ETs is increased

by the following relation, and the relation (6) is used to

generate ET.

(6)

Figure 3. Flowchart PDO

3.6. System and Work Model

Table 1 provides an overview of the symbols used in the

description of the algorithm, along with their corresponding

definitions. The core approach of the proposed method is

outlined as follows:

The proposed method aims to address the problem of

minimizing both demand delay and energy consumption in

cloud-fog computations. To achieve this, a new nature-

inspired optimization approach, called the Plant Defense

Optimization (PDO) algorithm, is introduced. This approach

optimizes response delay time and energy cost to meet user

demands efficiently. We evaluate the effectiveness of the

proposed PDO-based optimization approach by comparing

its performance to other existing methods, analyzing its

efficiency in solving the demand-delay and energy

consumption problems.

nG G w r  
r r r

1 1 ()ET ET ET

nG G w r G G    
r r r rr

 Rezaeizadeh Roukerd at.el

 82

Table 1. The Signs Used Along with Their Definitions

sign Definition sign Definition

N Number of requests or tasks TR Get results
R Request EC(x) [J] Electric energy consumption per joule
RK Task K from R's request z Additional information sent to the Admin node
FN Fog Mode PI Input Module Electrical Power
Admin Manage Mode PO Output Module Electrical Power
qt Average wait time in queue PS[W] Electric power per watt for data storage
CET Processing time ES Electric power consumption
TS Sent Time

4. Findings and Results

4.1. Evaluation Parameters

4.2. Evaluation Parameters for the Plant Defense

Algorithm in Application Processing Optimization

These parameters focus on assessing the performance of

the algorithm and its ability to reduce submission delays.

Average Total Delay vs. Data Volume:

This parameter measures the average total delay in

responding to IoT requests relative to the total data volume

transmitted. It is typically used to indicate how much the

delay has been reduced as the data volume increases.

Number of Missed Requests vs. Average Request Size:

This parameter evaluates the number of requests lost due

to network or server resource issues, in relation to the

average request size. It shows how the Plant Defense

Algorithm reduces the number of lost requests.

Ninety-May Delay Relative to Cloud:

This parameter measures the delay caused by the ninety-

may node compared to the average delay caused by cloud

nodes. It illustrates the performance difference between May

nodes and cloud nodes in terms of delay reduction.

Fog-to-Cloud Delay by Changing Fog Layer

Processing Speed:

This parameter compares the delays between fog and

cloud under varying processing speeds in the fog layer.

Ninety-May Delay vs. Cloud by Changing Server

Count in Fog Layer:

This parameter compares the delays between May nodes

and cloud nodes by adjusting the number of servers in the

fog layer.

Fog Breakpoints and Cloud Computing:

These parameters define the points where the Plant

Defense Algorithm fails, resulting in the computation being

transferred to the cloud.

Evaluation Parameters for the Plant Defense Algorithm in

Application Fault Tolerance

The following parameters are used to assess the fault

tolerance of requests within the Plant Defense Algorithm:

Guarantee Ratio (GR):

The ratio of tasks guaranteed to be completed.

Accepted Task Ratio (RTA):

The ratio of tasks accepted by the system for processing.

Number of Active Fog Nodes (NAF):

The total number of active fog nodes available for task

processing.

Active Fog Time (FAT):

The duration for which fog nodes remain active during

task execution.

Task Execution Time Ratio over Active Fog Nodes

(RTF):

The ratio of task execution time distributed across active

fog nodes.

Degree of Non-Equilibrium Loading Tasks (DIB):

A measure of how unbalanced the task distribution is

across fog nodes.

4.3. Evaluation of the proposed algorithm for minimizing

the delay of requests

The experiment consists of a set of 16 servers with an

average processing speed of 500 packs per second and

widely distributed from 50 to 1000 packs per second. The

average delay of servers is set to 5 milliseconds per package.

It is also distributed from 1 millisecond to 9.7 milliseconds.

A total of 100 requests were used in the test. Priorities are

distributed uniformly from 1 to 16. The runtime requirement

is set to an average of 400 seconds with a 50-hour variance.

Initially, the average size of the data starts from a small

value, such that it reduces the deadline for requests. No

request misses its execution deadline. Then, the average data

size increases to see its effect on total delay and number of

missed requests. Figure 3 and Figure 4 show the average

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 83

total delay and the number of requests lost against the

average size of requests. PDO shows less total delay than

other algorithms. The results of WFQ and PSQ are very

close to each other because the allocation of requests in the

resources is achieved based on the priority of both

algorithms, however, the submission is different. RR

represents the highest latency time, due to RR procedure,

without consideration of request priorities. It can also be

observed that PDO holds the record with no missing requests

for longer than other algorithms. However, at an average of

6,500 packets, PDO cannot guarantee that all request

deadlines are met because their service delays increase and

their deadlines become critical. It is important to note that in

all data, using PDO, can provide a practical scheduling

solution in which all request deadlines must be met.

However, simulation results show that it is not possible to

overwrite all requests. This is shown in Figure 3 between

6000 and 8000, at average data size. After 8,000 packages,

it becomes impossible to find the answer, and therefore, it is

impossible to find a practical scheduling program. This is

shown in the simulation because the actual delay of each

package can be different from the average delay.

Figure 4. Average total delay against data volume

Figure 5. The number of lost requests versus the average size of the requests

4.4. Dynamic programming

In another experiment, 16 servers and 500 requests were

used to assess the delay in processing applications. The

requests were generated based on a Poisson distribution with

an average input rate of one request per second. Priorities

were assigned uniformly between 1 and 16. The average

deadline for requests was set at 200 seconds, with a variance

of 50 seconds. Resources were scheduled at 10-second

intervals, and the average request size ranged from 1,000 to

10,000 packets. Figure 5 and Figure 6 depict the overall

average delay and the number of lost requests in relation to

the average data size. The Plant Defense Optimization

(PDO) algorithm demonstrated the best overall delay

performance compared to other algorithms. The results of

WFQ and PSQ were very close to each other, but the

 Rezaeizadeh Roukerd at.el

 84

performance gap widened as the average data size increased.

Figure 5 also shows that when the average data size is below

5,000 packets, PDO is able to process nearly all requests. At

an average data size of 6,000 packets, PDO experienced no

lost requests, while WFQ and PSQ lost approximately 10%

and 6% of requests, respectively. The RR algorithm also

exhibited a similar loss pattern. Beyond this point, as

requests become more critical, the number of unprocessed

requests rises. In the case of the PDO algorithm, lost requests

begin to appear once the data size exceeds 6,000 packets.

However, even in this scenario, PDO still outperforms the

other three algorithms in terms of minimizing lost requests.

Figure 6. General average delay versus data volume

4.5. Comparison of cloud and hybrid architectures

The purpose of this study is to assess the service delays

associated with resources that possess both cloud computing

and fog computing features. Generally, cloud resources are

classified as powerful due to their high processing

capabilities, but they are also associated with higher average

network transmission times and latency. On the other hand,

fog resources, while having more limited processing power,

are located closer to the network edge and therefore offer

lower average delays. An experiment was designed to

evaluate whether it is more efficient to use powerful cloud

resources or to embed lower-power resources within the fog

layer. To optimize response times and minimize delays in

handling requests, the formulated model considers three key

parameters:

- Average delay ratio, 𝛿 ̅ 𝑓/𝛿 ̅𝑐

- Processing speed ratio, 𝑃 𝑓/𝑃𝑐

- Resource Count Ratio, 𝑁𝑓/𝑁𝑐

The effect of each parameter on service delay is studied

independently by fixing two of them and changing only one.

The delay obtained by changing these parameters is

evaluated against a system that has a Cloud feature. This

cloud-based system is home to a set of 4 high-performance,

5,000-pack/second-line servers. However, the average delay

of these servers to 10 milliseconds per packet. To evaluate

the delay, a total of 500 applications are used in this set of

experiments. Their arrival follows the Poisson distribution

with an average arrival time of 1 second. The delay is studied

in comparison with the average size of the data, which varies

from 1000 packages to 10,000 packages.

4.6. Effect of delay mean ratio

In this experiment, the number of Meme servers is four

times that of cloud 𝑁𝑓 /𝑁𝑐 = 4. Their processing power is

only 10% cloud, 𝑃𝑓/𝑃𝑐 = 10%. The average delay ratio, 𝛿

𝑓/𝛿𝑐, varies from 1%, 10%, 20%, 50%, and 85%. Figure 7

shows the delay results and, as it is observed, an increase in

the average delay ratio from 1% to 85% increases the delay

until it reaches a point that passes through the fog lag. This

indicates that the fog servers are far from edge devices and

are closer to the fog servers.

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 85

Figure 7. Ninety-Me delay to the cloud

4.7. The effect of the processing speed ratio

In this experiment, the number of fog servers is four times

the number of cloud servers, 𝑁𝑓/𝑁𝑐 = 4. Their average delay

is 𝛿𝑓/𝛿𝑐 10%. The processing power, 𝑃𝑓/𝑃𝑐, varies to 3, 5,

7, 10 and 20 percent. Figure 8 shows delay results. As the

results presented in Figure 8 show, reducing the speed ratio

of processing from 20% to 3% increases the fog latency until

it reaches a point that crosses the cloud latency. This is

caused by low-process haze servers. In this case, even if

these resources are closer to the edge than the cloud

resources, the fog will offer high delays due to its low

processing capabilities.

Figure 8. Fog-to-cloud delay by changing the processing speed in the fog layer

4.8. The effect of the ratio of the number of sources

In this experiment, The average delay of the May servers,

is set to 10 percent of the mean cloud latency. The processing

power of May servers is set to 10 percent of the features of

cloud servers. The number of fog resources varies from

cloud to 100%, 150%, 200%, 300%, 400%, 600% and 800%.

Figure 9 shows the latency results for this experiment. As is

evident from the test given in Figure 9, a decrease in the ratio

of resources from 800% to 100% increases the fog delay

until it reaches a point that passes through the cloud lag. This

is because many foggy servers have very low resources.

 Rezaeizadeh Roukerd at.el

 86

Even if these resources are closer to the edge and have good

processing capability, having fewer resources will adversely

affect the delay.

Figure 9. Until recently ninety-May compared to the cloud by changing the number of servers in the fog layer

Another experiment was conducted to identify failure

points based on three parameters: average delay, processing

power, and number of resources. The average data size was

set to 5,000 packets. Figure 10 illustrates the experimental

results, showing the confluence point between fog delays

and cloud delays. The testing reveals that, under certain

conditions, a set of fog servers provides better latency

performance than a set of cloud servers. For example, for a

given average delay ratio and processing power ratio

between fog and cloud servers, the graph shows the number

of servers at which fog performs better than cloud, and vice

versa. The three most recent experiments demonstrated that

fog computations encounter a delay threshold due to high

delays (Figure 7), limited processing power (Figure 8), and

a low number of fog servers (Figure 9), at which point fog's

delay becomes greater than cloud computing's delay.

Figure 10. Foggy Breakpoints and Cloud Computing

0

50

100

150

200

250

1000 3000 5000 7000 9000

La
te

n
cy

 ,L
T

Requests Average Datasize

Cloud Fog-Nf/Nc = 100% Fog-Nf/Nc = 150%

Fog-Nf/Nc = 200% Fog-Nf/Nc = 300% Fog-Nf/Nc = 400%

Fog-Nf/Nc = 600% Fog-Nf/Nc = 800%

-50

0

50

100

150

0 5 10 15 20 25 30 35

δ
f/
δ

c
(%

)

Pf/Pc(%)

Fog-Nf/Nc = 100% Fog-Nf/Nc = 150%

Fog-Nf/Nc = 200% Fog-Nf/Nc = 300%

Fog-Nf/Nc = 400% Fog-Nf/Nc = 600%

Fog-Nf/Nc = 800%

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 87

Figure 11 represents the change in values of K (the weight

of each part of the objective function). The form of 11-a

shows the delay rate changes by changing its weight in the

objective function, as it is shown, by increasing its weight,

the value of the function F1 (the delay rate) also decreases.

This is quite clear, because the more weight increases, the

more fine increases (the algorithm moves to one-

dimensional), so it is expected to perform better for one part

of the function. Figure 11 shows the same behavior for the

second part of the function: energy consumption. Here by

increasing the weight of k2, the value of the second part of

the objective function is decreased and then it is fixed.

Figure 11. Changing K values on each part of the objective function

4.9. Evaluation of proposed algorithm for application

fault tolerance

The experimental results in Table 2 show that the four

algorithms of GRs are appropriate, but the DFTLA shows

the best performance. The proportion of GR in NFTULA is

relatively small. As mentioned, in NFTULA, the fault

tolerance approach is not considered, so this is why the a

decrease in GR in this algorithm compared to other methods.

Because some tasks that can be performed successfully may

be rejected by the system. For other algorithms, because they

somehow take an error tolerance approach, GRs have been

partially improved.

Table 2. Evaluation Parameters

Alg

Metr.
PDO SJD NO-FT

GR 0.99 0.95 0.76

RTF 0.88 0.81 0.51

FAT (×106) 7.65 8.91 15.55
DIB 0.18 0.16 0.08

In the PDO approach, the Guarantee Ratio (GR)

outperforms that of the SJD method, because in the PDO

approach, not all nodes are used to store information.

Instead, certain types of nodes have access to spine nodes,

reducing energy consumption and ultimately improving the

GR parameter. Energy consumption is also a key

consideration, as the energy levels of fog nodes are limited

and task scheduling must take this into account. In the PDO

method, nodes are selected for processing that do not

experience significant energy depletion during processing,

thereby reducing the likelihood of task failure and increasing

the GR. It is important to note that while the Resource Task

Factor (RTF) parameter behaves similarly in both the PDO

and SJD methods, the PDO method still produces better

results overall. In contrast, the NO-FT method, which lacks

an error control algorithm, performs significantly worse.

Another evaluation parameter, the Fog Active Time (FAT),

indicates the duration during which fog nodes are active.

Since this parameter is closely related to the RTF, it is

expected to yield similar results, as demonstrated in Table 2.

The behavior of different methods regarding the FAT

parameter is similar to their behavior with the RTF

parameter. The final parameter in Table 2, the Degree of

Imbalance (DIB), reflects the load distribution across the

network. As shown, the load imbalance across various

methods is relatively similar, except in cases where fault-

tolerant methods are not used. This is because, in most

methods, tasks are chosen to ensure a balanced load

distribution across the network. As the task request rate (sent

by the user) fluctuates, the number of active fog nodes

 Rezaeizadeh Roukerd at.el

 88

(NAF) also changes. Figure 12 illustrates the NAF variations

over time for different algorithms in environments of various

sizes—small, medium, and large. The number of active fog

nodes in each algorithm is closely tied to the number of tasks

being processed. As shown in Figure 12, when a large

number of tasks are present in the environment, the PDO

algorithm increases the number of active nodes to meet task

scheduling demands.

Figure 12. NAF Distribution Over Time

Another factor that affects NAF is a system error because

if the node selected to process correctly processes the task,

it does not require the choice of another ninety processors

(activating another node). As mentioned above, in the PDO

method, the load codes are selected which other nodes have

access to. Therefore, data is available if it requires data. In

the first 1000 seconds, algorithms in different environments

have different behaviors, because initially the energies of

noise are not reduced, fewer errors occur, and fewer jobs are

posted. For example, in Figure 12, algorithms have

performed better than SJD in terms of the NAF parameter in

less than 1000 seconds, and over time this process is

continued.RTA changes are shown over time in Figure 12.

As shown in Figure 13, the RTA of the two other methods

varies greatly in the first 1000 seconds and does not have

uniform behavior, but slowly increases over time, eventually

reaching GR. This means that when there are fewer active

nodes in the environment, the cloud is not able to accept new

tasks, but by increasing the active nodes, most accepted tasks

will eventually be completed on time. On the other hand, at

the beginning of the learning process of learning automata,

since the automata have non-existent initial weight, the

choice of ninety processors is merely random and the

environment shows unexpected behaviors, but with time the

automata shows more uniform behavior. However, since the

model has been trained from the beginning in the PDO

method, it has been better than the SJD method.

Figure 13. RTA Distribution Over Time

 Management Strategies and Engineering Sciences: 2024; 6(3):76-90

 89

5. Conclusion

Among the various methods of modeling and

optimization, the proposed algorithm based on Plant

Hormonal Defense Optimization (PDO) has demonstrated

significant improvements in performance. This approach

utilizes the PDO algorithm, along with constraints that

prevent impossible solutions, delivering high-quality,

practical solutions within a reasonable computational time.

To evaluate the performance of this algorithm, a set of

evaluation parameters is used. These parameters include:

average total delay relative to data volume, the number of

lost requests, the delay of May nodes compared to cloud

nodes, latency in May nodes relative to cloud nodes when

processing speed changes in the fog layer, May node delay

in comparison to cloud nodes by altering the number of

servers in the May layer, and the breakpoints between May

and Cloud. The results show that the PDO algorithm

significantly reduces delays and energy consumption

compared to other methods, making it a more efficient

solution for managing IoT requests. Additionally, the PDO

algorithm outperforms other approaches in fault tolerance

evaluation metrics, such as Guarantee Ratio (GR) and

Accepted Task Ratio (RTA). This method enhances the

efficiency and utility of IoT, promoting better

communication and the introduction of new services.

Ultimately, the Internet of Things (IoT) offers a wide range

of possibilities for improving everyday life. Its effects are

substantial, from reducing energy consumption and

improving healthcare services to increasing the efficiency of

smart cities. These advancements demand further research in

optimization and modeling to fully leverage this technology.

The PDO algorithm has shown its potential as a key tool in

this field, and with further optimization, it can significantly

enhance the performance of IoT systems. In this context,

optimal resource allocation is crucial. By incorporating the

PDO algorithm into this process, the resource allocation

system can be improved, leading to increased efficiency and

effectiveness of IoT systems. Moreover, it is vital to consider

the adaptability of this algorithm to different circumstances

and environments. This flexibility allows the PDO algorithm

to be applied in a variety of scenarios, boosting its efficiency

and applicability in the IoT domain. Looking ahead, future

research on IoT and its related challenges must focus on

developing and optimizing algorithms and methods for

resource management and productivity. The PDO algorithm

represents an important step in this direction, offering an

efficient and intelligent approach to managing IoT requests.

It can serve as a powerful tool for improving the

performance and efficiency of the Internet of Things.

Authors’ Contributions

Authors equally contributed to this article.

Acknowledgments

Authors thank all participants who participate in this

study.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial

support.

Ethical Considerations

All procedures performed in this study were under the

ethical standards.

References

[1] O. Vermesan and P. Friess, Internet of things: converging

technologies for smart environments and integrated

ecosystems. River Publishers, 2013.

[2] J. Wan and et al., "Fog Computing for Energy-aware Load

Balancing and Scheduling in Smart Factory," IEEE

Transactions on Industrial Informatics, 2018, doi:

10.1109/TII.2018.2818932.

[3] P. Zhang, M. Zhou, and G. Fortino, "Security and trust issues

in Fog computing: A survey," Future Generation Computer

Systems, vol. 88, pp. 16-27, 2018, doi:

10.1016/j.future.2017.09.002.

[4] A. A. Mutlag and et al., "Enabling technologies for fog

computing in healthcare IoT systems," Future Generation

Computer Systems, vol. 90, pp. 62-78, 2019, doi:

10.1016/j.future.2018.07.049.

[5] Y. Pan and G. Luo, "Cloud Computing, Fog Computing, and

Dew Computing," ZTE COMMUNICATIONS, vol. 15, no. 4,

2017, doi: 10.1109/MCC.2017.4250924.

[6] F. Bonomi and et al., "Fog computing and its role in the

Internet of Things," in Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, 2012, doi:

10.1145/2342509.2342513.

[7] O. Salman and et al., "IoT survey: An SDN and fog computing

perspective," Computer Networks, vol. 143, pp. 221-246,

2018, doi: 10.1016/j.comnet.2018.07.020.

[8] J. Zhu and et al., "Improving website performance using edge

servers in fog computing architecture," in 2013 IEEE Seventh

International Symposium on Service-Oriented System

Engineering, 2013: IEEE. [Online]. Available:

https://ieeexplore.ieee.org/document/6525539. [Online].

Available: https://ieeexplore.ieee.org/document/6525539

https://ieeexplore.ieee.org/document/6525539
https://ieeexplore.ieee.org/document/6525539

 Rezaeizadeh Roukerd at.el

 90

[9] D. De Vleesschauwer, G. Gheysen, and M. Höfte, "Hormone

defense networking in rice: tales from a different world,"

Trends in plant science, vol. 18, no. 10, pp. 555-565, 2013,

doi: 10.1016/j.tplants.2013.07.002.

[10] R. Garg, A. K. Tyagi, and M. Jain, "Microarray analysis

reveals overlapping and specific transcriptional responses to

different plant hormones in rice," Plant signaling & behavior,

vol. 7, no. 8, pp. 951-956, 2012, doi: 10.4161/psb.20910.

[11] R. Li and et al., "OsNPR1 negatively regulates herbivore‐

induced JA and ethylene signaling and plant resistance to a

chewing herbivore in rice," Physiologia Plantarum, vol. 147,

no. 3, pp. 340-351, 2013, doi: 10.1111/j.1399-

3054.2012.01666.x.

[12] X. Peng and et al., "Constitutive expression of rice WRKY30

gene increases the endogenous jasmonic acid accumulation,

PR gene expression, and resistance to fungal pathogens in

rice," Planta, vol. 236, no. 5, pp. 1485-1498, 2012, doi:

10.1007/s00425-012-1698-7.

[13] V. B. Souza and et al., "Towards distributed service allocation

in fog-to-cloud (F2C) scenarios," in Global Communications

Conference (GLOBECOM), 2016 IEEE, 2016: IEEE, doi:

10.1109/GLOCOM.2016.7842341.

[14] S. Bitam, S. Zeadally, and A. Mellouk, "Fog computing job

scheduling optimization based on bees swarm," Enterprise

Information Systems, vol. 12, no. 4, pp. 373-397, 2018, doi:

10.1080/17517575.2017.1304579.

[15] R. Al-Omari, A. K. Somani, and G. Manimaran, "Efficient

overloading techniques for primary-backup scheduling in

real-time systems," Journal of Parallel and Distributed

Computing, vol. 64, no. 5, pp. 629-648, 2004, doi:

10.1016/j.jpdc.2004.03.015.

[16] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, "Towards fault-

tolerant fog computing for IoT-based smart city applications,"

in 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), 2019: IEEE, doi:

10.1109/CCWC.2019.8666447.

[17] L. Yin, J. Luo, and H. Luo, "Tasks scheduling and resource

allocation in fog computing based on containers for smart

manufacturing," IEEE Transactions on Industrial Informatics,

vol. 14, no. 10, pp. 4712-4721, 2018, doi:

10.1109/TII.2018.2851241.

[18] B. M. Nguyen, H. Thi Thanh Binh, and B. Do Son,

"Evolutionary Algorithms to Optimize Task Scheduling

Problem for the IoT Based Bag-of-Tasks Application in

Cloud-Fog Computing Environment," Applied Sciences, vol.

9, no. 9, p. 1730, 2019, doi: 10.3390/app9091730.

[19] A. C. Vlot, D. M. A. Dempsey, and D. F. Klessig, "Salicylic

acid, a multifaceted hormone to combat disease," Annual

review of phytopathology, vol. 47, pp. 177-206, 2009, doi:

10.1146/annurev.phyto.050908.135202.

