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Abstract 

This study aimed to develop and validate a machine learning model capable of accurately predicting enhanced oil recovery 

(EOR) efficiency under harsh reservoir conditions. The study employed a quantitative, data-driven design using reservoir, 

petrophysical, and operational data collected from a wide range of high-temperature, high-salinity, and heterogeneous 

reservoirs. Data sources included core-flooding experiments, reservoir simulations, and field-reported EOR project results. 

All variables were preprocessed through scaling, outlier treatment, and missing-value handling. Machine learning models—

including Random Forest, Gradient Boosting, Support Vector Regression, and Artificial Neural Networks—were trained 

using an 80/20 train–test split with repeated cross-validation. Feature importance was assessed using SHAP values to ensure 

interpretability. Model performance was evaluated using RMSE, MAE, and R² metrics to determine predictive accuracy 

under extreme reservoir conditions. Gradient Boosting achieved the highest predictive accuracy (R² = 0.91; RMSE = 3.05), 

outperforming Support Vector Regression and demonstrating slightly better generalization than Random Forest and 

Artificial Neural Networks. Across all models, reservoir temperature and formation water salinity emerged as the strongest 

negative predictors of EOR efficiency, while optimized polymer and surfactant concentrations consistently showed positive 

predictive effects. Permeability and porosity had moderate but meaningful influences, while brine hardness and injection 

rate contributed smaller, variable effects. SHAP interpretability confirmed that the model’s predictive directions aligned 

with known physicochemical behaviors in harsh reservoir environments. Machine learning methods—particularly ensemble 

models—provide reliable, interpretable, and highly accurate tools for predicting EOR efficiency in harsh reservoir 

environments, offering significant potential to support screening, optimization, and decision-making for chemical and gas-

based EOR projects. 
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1. Introduction 

Enhanced oil recovery (EOR) has become an 

indispensable component of modern petroleum development 

strategies as conventional reservoirs mature and the global 

need for sustainable hydrocarbon production intensifies. A 

progressively large proportion of the world’s remaining 

recoverable reserves is trapped in formations characterized 

by adverse physicochemical conditions, including high 

temperature, elevated salinity, extreme heterogeneity and 

complex fluid–rock interactions [1-3]. These harsh reservoir 

environments significantly compromise the performance of 

chemical, gas, thermal and hybrid EOR methods, making 

predictive modeling a critical tool for optimizing operations 

before costly field deployment. Traditional reservoir 

engineering correlations frequently struggle to capture the 

nonlinear relationships governing EOR efficiency under 

these extreme conditions, particularly when reservoir 

characteristics interact in unpredictable ways [4].  

Recent advances in reservoir-focused machine learning 

research have demonstrated substantial capabilities across a 

broad spectrum of subsurface applications. For instance, the 
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integration of machine learning with multiphase flow and 

geochemical modeling has enabled more accurate 

characterization of CO₂ EOR and storage efficiency, 

particularly in residual oil zones where complex trapping 

mechanisms operate [5]. Machine learning has also been 

shown to be a powerful tool in predicting foam viscosity 

during supercritical CO₂ injection, addressing one of the 

major uncertainties in mobility control applications [6]. 

Other studies have combined nanotechnology and artificial 

intelligence to enhance recovery in unconventional gas 

condensate systems, where condensate banking and 

retrograde condensation hinder production, demonstrating 

that hybrid data-driven approaches can effectively guide 

condensate recovery design [7]. Along similar lines, 

researchers have implemented machine learning to predict 

foam half-life time during chemical EOR and CO₂ 

sequestration, an essential parameter for evaluating foam 

durability under reservoir conditions [1]. These 

advancements collectively indicate that machine learning 

techniques can account for intricate thermodynamic and 

transport mechanisms that are difficult to represent in 

conventional formulations. 

Parallel developments have also occurred in the 

predictive modeling of mechanical, geomechanical and 

operational parameters that influence EOR performance. For 

example, machine learning has been used to model the 

viscoelastic properties of preformed particle gels—

chemicals frequently used for conformance control—

demonstrating that data-driven approaches can replace 

costly laboratory-based rheology measurements [8]. 

Similarly, the combination of geomodelling and machine 

learning has been applied to enhance carbon capture and 

storage workflows by improving the characterization of 

subsurface flow pathways and containment risks [9]. The 

expansion of machine learning beyond petroleum 

engineering into environmental and water-quality 

domains—such as its use for chlorophyll-a estimation 

through Sentinel-2 image analysis—further illustrates the 

generalizable potential of these methods in handling 

complex natural systems [10]. Relevant advancements have 

also been documented in CO₂ minimum miscibility pressure 

prediction [11] and in physics-informed forecasting of 

reservoir CO₂ flow connectivity, highlighting significant 

improvements in both accuracy and computational 

efficiency [12]. 

Machine learning has further proven valuable in the 

optimization of stimulation, acidizing and geochemical 

treatment operations relevant to EOR. AI-based prediction 

of skin factor during matrix acidizing allows for real-time 

identification of formation damage severity and post-

treatment productivity potential [13]. Data-driven 

petrophysical tools have also demonstrated improved ability 

to describe structural geomechanics and evaluate formation 

properties essential for selecting appropriate EOR strategies 

[14]. Other biologically inspired or hybrid approaches—

including polysaccharide fermentation fluids used for 

displacement improvement—have been evaluated with the 

help of machine learning to reveal how nontraditional agents 

perform under extreme salinity and temperature [15]. Deep-

learning frameworks have also accelerated phase-

equilibrium calculations in compositional simulators, 

providing reliable predictions that support both gas injection 

and solvent-based EOR applications [16]. These diverse 

contributions collectively highlight that machine learning 

platforms, when trained with quality data, can significantly 

improve the predictive reliability of reservoir engineering 

workflows. 

Equally transformative are AI models used to determine 

interfacial tension between crude oil and injected gases, a 

parameter that plays a fundamental role in controlling 

miscibility and displacement efficiency [17]. The ability to 

directly learn from laboratory measurements has allowed 

researchers to bypass the limitations of classical equations of 

state at high-pressure and high-temperature conditions. 

Machine learning has also been used to compare the 

performance of artificial neural networks and regression 

models for predicting porosity and permeability, two critical 

parameters affecting any EOR process [18]. Intelligent 

modeling frameworks have likewise improved pore pressure 

predictions in complex geological settings, enhancing 

geohazard prevention and injectivity forecasting [19]. Data-

driven models have been applied to optimize drilling and 

completion decisions, including polycrystalline diamond 

compact (PDC) bit selection through advanced graph neural 

network architectures [20]. The growing adoption of 

machine learning across drilling, petrophysics and 

stimulation workflows has therefore helped construct a more 

holistic digital foundation for EOR planning. 

Other machine learning efforts have focused explicitly on 

fluid–fluid interaction modeling, which directly influences 

chemical and gas-based EOR. Robust ML algorithms have 

been used to predict crude oil–brine interfacial tension under 

conditions representative of saline reservoirs, providing 

improved accuracy compared with classical correlations 

[21]. Researchers have also developed machine learning 

models to evaluate hydrogen solubility in aqueous systems, 
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which offers insight into potential hydrogen–reservoir 

interactions relevant to future energy systems and hybrid 

EOR concepts [22]. The application of machine learning to 

flow diversion technologies in carbonate reservoirs has 

additionally shown that intelligent modeling can support 

conformance control in highly fractured or vuggy formations 

where sweep efficiency is difficult to maintain [23]. In 

integrated reservoir modeling, machine learning has helped 

optimize chemical and storage processes simultaneously by 

analyzing key features affecting EOR and carbon 

sequestration performance, highlighting the relevance of 

feature engineering and sensitivity analysis [4]. 

Comprehensive machine learning strategies have also been 

successfully applied in screening sandstone and carbonate 

reservoirs for suitable EOR techniques, providing a 

systematic approach for preliminary feasibility assessments 

[24]. 

Although some of these studies originate outside the 

petroleum sector, they provide methodological 

advancements that are relevant for harsh-reservoir EOR 

prediction. Machine learning approaches originally 

developed for agricultural water requirement modeling, for 

example, demonstrate how data-driven forecasting can 

outperform conventional methods in systems with strong 

nonlinearities [25]. A similar pattern appears in machine 

learning–based estimation of oil–nitrogen interfacial tension 

[26], low-salinity microemulsion viscosity modeling [27], 

and total skin factor prediction in wells with complex 

perforation geometries [28]. The predictive use of deep-

learning and machine-learning hybrid models for skin factor 

estimation in perforated wells further reinforces the 

applicability of advanced computational methods for 

subsurface transport processes [29]. Additional 

contributions include machine learning predictions for 

pressure at coiled tubing nozzles during nitrogen lifting [30] 

and the use of downhole cameras to validate ML-based 

perforation entry hole diameter forecasts [31]. 

Semi-supervised learning has opened additional 

opportunities. For example, label-propagation techniques 

applied to EOR screening have proven capable of providing 

reliable recommendations even when datasets are partially 

labeled or incomplete [2]. Similarly, machine learning 

models for predicting CO₂ and H₂S solubility in brines have 

generated insights applicable not only to EOR but also to 

carbon storage, gas injection and geothermal applications 

[32]. Deep neural network–based history matching has 

further demonstrated efficiency gains by reducing 

computational complexity in reservoir-simulation 

workflows [33]. As the use of machine learning continues to 

expand across EOR-related domains, the integration of data-

driven frameworks with physical insights has become 

increasingly attractive. Hybrid physics-informed techniques, 

ensemble learning and interpretable ML tools have all 

enhanced the practical reliability of predictions in reservoir 

systems characterized by significant uncertainty and 

multivariate interactions. 

Despite these advances, predicting EOR efficiency under 

harsh reservoir conditions remains a formidable challenge. 

Extreme conditions such as temperatures exceeding 90–

120°C, salinities surpassing 100,000 ppm, high divalent ion 

concentrations, strong heterogeneity and wettability 

alteration all introduce fundamental uncertainties. Many 

existing models do not explicitly integrate the combined 

effects of thermal, chemical and geological factors. Others 

rely on limited datasets or narrow experimental conditions. 

While past studies have investigated individual aspects of 

EOR—such as fluid–fluid interactions, foam performance, 

miscibility or conformance control—there remains a need 

for integrated machine learning frameworks that holistically 

evaluate how key reservoir properties, chemical parameters 

and operational variables interact to influence EOR 

outcomes under severe conditions. Such a model must not 

only deliver accurate predictions but also offer 

interpretability for practical reservoir-engineering decision-

making. 

Considering the depth of recent technological 

advancements and the urgent demand for improved 

predictability in high-risk reservoirs, this study seeks to 

build upon the existing knowledge base by creating a robust, 

data-driven machine learning model designed specifically to 

forecast EOR efficiency in harsh reservoir environments, 

incorporating a wide range of geological, petrophysical and 

fluid–chemical properties to enhance accuracy, 

generalizability and operational relevance. 

The aim of this study is to develop and validate a machine 

learning model capable of accurately predicting EOR 

efficiency under harsh reservoir conditions. 

2. Methodology 

This study employed a quantitative, data-driven research 

design aimed at developing predictive models capable of 

estimating enhanced oil recovery (EOR) efficiency under 

harsh reservoir conditions. The design was structured around 

supervised machine learning techniques trained on a large 

dataset compiled from heterogeneous reservoir 
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environments characterized by extreme temperature–

pressure regimes, high salinity, elevated gas–oil ratios, and 

varying rock–fluid interaction properties. The “participants” 

in this study were not human subjects but instead consisted 

of reservoir samples, field observations, and laboratory-

validated measurements collected from more than twenty 

offshore and onshore oilfields representing carbonate and 

sandstone lithologies. These fields were selected based on 

their exposure to adverse physicochemical conditions 

known to challenge EOR implementation, including deep 

reservoirs exceeding 90°C, highly saline brines surpassing 

100,000 ppm, and formations with complex wettability 

patterns. The dataset embodied a comprehensive 

representation of geological, petrophysical, and operational 

realities, enabling the machine learning methods to be 

trained and validated using scenarios that realistically mirror 

the constraints of harsh reservoir systems. The study design 

incorporated an 80/20 training–testing split with repeated 

cross-validation to prevent overfitting and ensure the 

robustness of the forthcoming predictive models. 

Data were collected from a combination of core-flooding 

experiments, reservoir simulation outputs, and historical 

EOR project records provided by partner petroleum 

companies. Core-flooding experiments yielded precise 

measurements of fluid displacement efficiency, interfacial 

tension reduction, polymer degradation patterns, surfactant 

adsorption, and the impact of salinity and temperature on 

mobility control agents. These experiments were performed 

under controlled laboratory conditions using high-pressure, 

high-temperature (HPHT) core-flood apparatus capable of 

simulating in-situ reservoir stress conditions. Reservoir 

simulation data were generated using commercial simulators 

configured to replicate local geochemical interactions, 

fracture density, and fluid-rock behavior, while field records 

included injection strategies, chemical slug compositions, 

and observed incremental oil recovery values. Additional 

petrophysical parameters such as porosity, permeability, 

grain size distribution, and mineralogical composition were 

derived from core analysis reports and wireline logs. 

Operational parameters—including injection pressure, 

chemical concentration, slug volume, and wellbore 

configuration—were standardized across sources to ensure 

comparability before modeling. All data underwent 

preprocessing steps such as outlier removal, unit 

harmonization, feature scaling, and missing-value treatment. 

For this purpose, a combination of Python-based toolkits 

(Pandas, NumPy, and SciPy) and domain-specific quality-

control protocols were used to ensure that only consistent, 

high-fidelity data entered the machine learning pipeline. 

Data analysis followed a multi-stage modeling strategy 

that involved feature engineering, algorithm selection, 

model training, cross-validation, and final performance 

evaluation. After preprocessing, a correlation-driven feature 

selection process was used to identify the most influential 

predictors of EOR efficiency, including temperature, 

salinity, polymer viscosity retention, surfactant adsorption 

rate, brine composition, and reservoir heterogeneity indices. 

Several supervised learning algorithms were evaluated, 

including Random Forest, Gradient Boosting Machines, 

Support Vector Regression, and Artificial Neural Networks. 

Each algorithm was trained using the training dataset and 

tuned through grid-search optimization to find the best 

hyperparameters for maximizing predictive accuracy. Model 

performance was assessed using the testing dataset and 

evaluated based on root mean square error (RMSE), mean 

absolute error (MAE), and coefficient of determination (R²). 

Cross-validation ensured statistical reliability and prevented 

the models from overfitting to specific reservoir types or 

operational scenarios. SHAP (SHapley Additive 

exPlanations) values were also applied to interpret the 

contribution of each feature to the model’s predictions and 

to ensure that the machine learning components aligned with 

known reservoir engineering principles. The final model 

selection was based on a balance between predictive 

accuracy, generalizability across harsh reservoir conditions, 

and interpretability for petroleum engineering decision-

making. 

3. Findings and Results 

The findings of this study show that machine learning 

methods can predict EOR efficiency under harsh reservoir 

conditions with high accuracy and acceptable 

generalizability. Across a diverse dataset of high-

temperature, high-salinity carbonate and sandstone 

reservoirs, the models were able to capture nonlinear 

interactions between geological, petrophysical and 

operational parameters, with prediction errors remaining 

within a narrow band relative to the observed incremental oil 

recovery. The following tables and figures summarize the 

main descriptive characteristics of the dataset, comparative 

performance of the evaluated algorithms and the relative 

importance of key predictors, along with graphical evidence 

of model fit and feature contributions. 
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Table 1 presents the descriptive statistics of the main 

continuous variables used in the modeling process, including 

reservoir conditions, petrophysical properties, chemical 

injection parameters and the resulting EOR efficiency. 

Table 1. Descriptive statistics of key variables used in the machine learning models 

Variable Unit Mean SD Min Max 

Reservoir temperature °C 104.30 12.70 88.50 137.90 

Formation water salinity ppm 116,430 18,520 82,310 157,640 

Permeability mD 185.72 96.31 12.40 482.65 

Porosity % 17.84 4.12 8.10 27.95 

Polymer concentration ppm 1,650.75 410.22 750.50 2,550.80 

Surfactant concentration wt% 0.47 0.16 0.15 0.85 

EOR efficiency % incremental 18.63 7.45 4.20 36.80 

 

The descriptive statistics indicate that the dataset covers 

a wide range of harsh reservoir environments, with 

temperatures frequently exceeding 100°C and salinity levels 

averaging above 100,000 ppm, conditions that are typically 

challenging for chemical stability and mobility control. 

Permeability spans from tight formations (around 12.40 mD) 

to relatively high-permeability rocks (up to 482.65 mD), 

while porosity values range between 8.10% and 27.95%, 

reflecting heterogeneous pore structures. Chemical injection 

parameters show meaningful variability, with polymer 

concentration averaging 1,650.75 ppm and surfactant 

loading about 0.47 wt%, enabling the models to learn 

responses over a broad range of treatment designs. The target 

variable, EOR efficiency, has a mean incremental oil 

recovery of 18.63% with a standard deviation of 7.45%, 

suggesting that the system includes both marginal and highly 

successful EOR operations, which is essential for training 

robust predictive models. 

Table 2 summarizes the predictive performance of the 

four machine learning algorithms evaluated in this study—

Random Forest, Gradient Boosting, Support Vector 

Regression and Artificial Neural Network—on both training 

and test datasets. 

Table 2. Performance metrics of machine learning models for predicting EOR efficiency 

Model Dataset RMSE MAE R² 

Random Forest Train 2.71 2.02 0.93 

Random Forest Test 3.28 2.46 0.89 

Gradient Boosting Train 2.54 1.88 0.94 

Gradient Boosting Test 3.05 2.27 0.91 

Support Vector Regression Train 3.42 2.69 0.88 

Support Vector Regression Test 3.96 3.05 0.85 

Artificial Neural Network Train 2.36 1.74 0.95 

Artificial Neural Network Test 3.67 2.83 0.87 

 

The performance comparison shows that all models 

achieve reasonably good predictive accuracy, with test-set 

R² values ranging from 0.85 to 0.91. Gradient Boosting 

demonstrates the best overall balance between fit and 

generalization, with a test RMSE of 3.05, MAE of 2.27 and 

R² of 0.91, indicating that it explains over 90% of the 

variance in EOR efficiency on unseen data. Random Forest 

yields similar performance, with a slightly higher test RMSE 

of 3.28 and R² of 0.89, suggesting robust but marginally less 

precise predictions. The Artificial Neural Network attains 

the lowest error on the training set (RMSE 2.36; R² 0.95), 

but its test performance (RMSE 3.67; R² 0.87) indicates 

some overfitting, which is consistent with its higher capacity 

and sensitivity to data size. Support Vector Regression 

performs adequately but clearly lags behind the ensemble-

based methods, with the highest test RMSE of 3.96 and 

lowest R² of 0.85. Overall, these results justify the selection 

of Gradient Boosting as the primary model for subsequent 

interpretation and scenario analysis. 

Table 3 reports the relative importance of the main 

predictors in the optimized Gradient Boosting model, 

providing insight into which reservoir and operational 

variables most strongly influence predicted EOR efficiency. 
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Table 3. Relative importance of key predictors in the gradient boosting model 

Predictor Description Relative importance (%) 

Reservoir temperature In-situ temperature at reservoir depth 19.80 

Formation water salinity Total dissolved solids in formation brine 17.50 

Polymer concentration Injected polymer dosage 15.30 

Surfactant concentration Injected surfactant loading 13.90 

Permeability Effective reservoir permeability 11.60 

Porosity Fractional pore volume 9.80 

Brine hardness Concentration of divalent ions (Ca²⁺, Mg²⁺) 7.40 

Injection rate Volumetric rate of injected fluids 4.70 

 

The feature-importance profile reveals that reservoir 

temperature and formation water salinity jointly account for 

more than one-third of the explanatory power, emphasizing 

the central role of thermal and ionic environments in 

controlling the performance of chemical EOR under harsh 

conditions. Polymer and surfactant concentrations together 

contribute 29.20% of the total importance, confirming that 

proper tuning of chemical recipes is critical, but their 

effectiveness is highly conditioned by the underlying 

reservoir environment. Permeability and porosity, with 

combined importance of 21.40%, highlight the influence of 

rock fabric and flow pathways on sweep efficiency and 

displacement. Brine hardness and injection rate, while less 

influential individually, still contribute meaningfully to 

prediction quality and reflect the role of divalent ions in 

polymer and surfactant degradation as well as the 

significance of operational design parameters for achieving 

favorable mobility ratios. These results indicate that the 

machine learning model captures a physically plausible 

hierarchy of controls on EOR efficiency. 

 

Figure 1. Observed versus predicted EOR efficiency for the gradient boosting model on the test dataset 

The relationship between observed and predicted EOR 

efficiency in the test dataset, as summarized in Figure 1, 

shows a tight clustering of data points around the 45-degree 

line, indicating strong agreement between model predictions 

and measured incremental oil recovery. Most test samples 

fall within a ±5 percentage-point envelope around the line of 
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perfect prediction, with only a few cases displaying larger 

deviations, typically at the extreme ends of the efficiency 

range where measurement uncertainty and unmodeled local 

heterogeneities are expected to be greater. The near-linear 

trend across the full spectrum of low to high EOR 

efficiencies suggests that the model maintains accuracy both 

in marginally effective and highly successful projects, rather 

than being biased toward mid-range outcomes. This pattern 

supports the credibility of the model as a practical tool for 

forecasting expected gains from prospective EOR scenarios 

in reservoirs with harsh physicochemical conditions. 

 

Figure 2. SHAP summary plot showing feature contributions to EOR efficiency predictions under harsh reservoir conditions 

The SHAP-based interpretation summarized in Figure 2 

corroborates the feature-importance results from Table 3 and 

provides additional insight into the directionality of each 

predictor’s effect on predicted EOR efficiency. High 

reservoir temperatures are generally associated with reduced 

predicted efficiency when combined with very high salinity 

and hardness levels, reflecting the detrimental impact of 

extreme thermal and ionic conditions on polymer stability 

and surfactant performance. In contrast, moderate increases 

in polymer and surfactant concentrations, within the ranges 

captured in the dataset, tend to shift SHAP values positively, 

indicating that optimized chemical loading can partially 

offset the adverse effects of harsh environments. Higher 

permeability and intermediate porosity values produce 

positive contributions, consistent with improved sweep and 

displacement, while very low or very high injection rates 

show mixed SHAP patterns, suggesting that both under-

injection and excessive rates can impair displacement 

efficiency. Overall, the SHAP analysis demonstrates that the 

model’s internal logic aligns with established reservoir 

engineering principles and provides interpretable guidance 

for designing EOR strategies under challenging reservoir 

conditions. 

4. Discussion and Conclusion 

The results of this study demonstrate that machine 

learning techniques can reliably predict enhanced oil 

recovery (EOR) efficiency under harsh reservoir conditions, 

revealing consistent patterns across a dataset dominated by 

high-temperature, high-salinity, and heterogeneous 

formations. The strong performance of ensemble and deep-

learning models—particularly gradient boosting and 

artificial neural networks—reflects the growing 

convergence between data-driven subsurface 

characterization and predictive reservoir engineering 

workflows, a trend observed broadly in recent energy 

research. The high test-set accuracy observed in this study 

aligns with earlier findings showing that machine learning 

provides substantial improvements over conventional 

empirical correlations when modeling complex multiphase 

flow behavior and chemical interactions in challenging 

reservoir environments. For instance, the demonstrated 

predictive capability resonates with the machine learning–

based assessment of CO₂ EOR and storage efficiency that 

also achieved accurate outcomes across geologically 

complex residual oil zones [5]. The ability of the models 

here to generalize well under extreme salinity and 

temperature conditions mirrors the success of ML-driven 
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analyses of supercritical CO₂ foam viscosity, which 

similarly captured the nonlinear effects of ionic strength and 

pressure on foam rheology [6]. These parallels indicate that 

the machine learning framework developed in this study is 

grounded in a broader technical shift within EOR research 

toward high-dimensional, data-centric learning systems. 

The relative importance profiles generated from the 

gradient boosting model illustrate that reservoir temperature, 

formation water salinity, and chemical concentrations exert 

the strongest influence on EOR efficiency under adverse 

conditions. This finding is congruent with emerging 

evidence showing that thermal–ionic environments 

fundamentally control the performance of chemical and gas-

based EOR. For example, nanofluid-assisted condensate 

recovery models have demonstrated heightened sensitivity 

to temperature-driven phase behavior changes, reinforcing 

the role of thermal gradients in shaping displacement 

outcomes [7]. Similarly, studies modeling foam half-life 

time using machine learning report substantial salinity-

dependent degradation patterns that directly affect foam 

stability and mobility control [1]. The strong negative effect 

of high salinity found in our feature-importance and SHAP 

analyses is also consistent with experimental and 

computational work on preformed particle gels, where high 

ionic strength significantly alters the storage and loss moduli 

of polymeric agents, thereby influencing sweep efficiency 

[8]. In addition, the significant positive contributions of 

polymer and surfactant concentrations observed in this study 

align with mechanistic findings from displacement 

experiments involving polysaccharide fermentation fluids 

under extreme reservoir conditions, which highlight the 

compensatory role of optimized chemical dosing in 

counteracting harsh environmental impediments [15]. These 

convergent results across multiple studies reinforce the 

robustness of the model’s learned relationships. 

The role of petrophysical parameters—particularly 

permeability and porosity—as secondary but meaningful 

contributors to EOR efficiency agrees with prior work using 

machine learning to predict physical reservoir properties. 

Earlier research demonstrated that ML-based porosity and 

permeability prediction significantly improves reservoir 

characterization accuracy and directly influences 

displacement modeling outcomes [18]. Moreover, machine 

learning–aided pore pressure prediction in geologically 

complex settings reveals that subtle variations in 

petrophysical architecture produce disproportionate impacts 

on injectivity and fluid-flow dynamics [19]. The strong 

agreement between these works and the present findings 

validates the ability of the machine learning models used in 

this study to reflect realistic reservoir-behavior controls that 

have been verified independently in previous literature. 

Likewise, the moderate influence of brine hardness found in 

this research is compatible with machine learning studies 

that model crude oil–brine interfacial tension, which indicate 

that divalent ion content drives interfacial destabilization 

and reduces the efficiency of chemical agents in high-

salinity brines [21]. These associations confirm that the 

model captures well-known physicochemical mechanisms 

governing EOR performance. 

The strong predictive performance of ensemble learning 

observed here also aligns closely with broader literature 

reporting similar algorithmic advantages across reservoir 

engineering tasks. For example, machine learning–based 

modeling of hydrogen solubility in water has shown that 

ensemble models outperform simpler regressors when 

capturing complex solubility trends driven by pressure, ionic 

strength and temperature [22]. Additionally, flow diversion 

modeling in carbonate reservoirs—which presents 

challenges highly analogous to EOR conformance-control 

problems—has demonstrated that ensemble methods 

produce more robust predictions than traditional analytical 

approaches [23]. The strong test-set performance of our 

gradient boosting model is particularly consistent with 

integrated EOR–carbon sequestration studies, which report 

that feature-engineered ensemble models deliver the highest 

accuracy across coupled geochemical–geomechanical 

systems [4]. These parallels strongly support the selection of 

gradient boosting as a primary predictive tool in this study. 

In the broader context of EOR research, the findings also 

support the increasing relevance of machine learning in 

early-stage screening and decision support. For instance, 

comprehensive machine learning approaches for EOR 

screening in sandstone and carbonate reservoirs have 

demonstrated that data-driven methods significantly reduce 

the uncertainty associated with selecting candidate fields and 

injection strategies [24]. Similar benefits have been observed 

in machine learning–based viscosity modeling of oil–

surfactant–brine systems, where the models captured the 

intricate behavior of microemulsions under reservoir 

conditions with far greater detail than classical correlations 

[27]. The predictive reliability observed in our results is 

therefore consistent with the success of such models in other 

EOR workflows. Evidence from other subsurface 

applications further reinforces this trajectory: machine 

learning estimates of crude oil–nitrogen interfacial tension 

[26], machine learning predictions of CO₂ minimum 
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miscibility pressure [11], and physics-informed ML 

forecasting of flow connectivity in CO₂ EOR [12] all show 

similarly high predictive fidelity. Collectively, these 

findings indicate that machine learning systems—when 

trained with high-quality, diverse datasets—reliably 

outperform classical methods in predicting key EOR 

parameters under extreme conditions. 

The interpretability analyses in this study, especially 

SHAP values, provide critical insights that complement 

existing literature by elucidating how input features affect 

EOR efficiency in harsh environments. The negative SHAP 

contributions associated with increasing temperature and 

salinity reflect the same trends reported in studies evaluating 

microstructural fluid behavior under thermal and ionic 

stress, including work on foam stability and CO₂ injection 

behavior. Similar directional effects have been observed in 

downhole operational contexts, such as machine learning–

based skin factor prediction in perforated wells [28] and 

deep-learning models for perforation entry hole diameter 

forecasting [31], both of which show that adverse wellbore 

or reservoir conditions reduce treatment efficiency. The 

model's ability to replicate such mechanistic effects suggests 

that its predictions are not merely statistical artifacts but are 

aligned with established physical principles. Furthermore, 

the ability of deep learning and ensemble models to 

accurately reflect reservoir operational behavior has been 

affirmed in several unrelated domains, such as machine 

learning prediction of coiled tubing nozzle outlet pressure 

[30], semi-supervised EOR screening using label-

propagation frameworks [2], and deep-learning-accelerated 

history matching workflows [33]. The present model’s 

interpretability outputs therefore stand within a larger 

scientific context of physically-consistent machine learning 

in subsurface modeling. 

The reliability of the present study’s predictions is further 

supported by work examining fluid–chemical interactions 

across other subsurface applications. For example, advanced 

ML models predicting CO₂ and H₂S solubility in brines have 

shown that the ability to learn high-dimensional interactions 

is crucial for accurate forecasting under extreme 

thermodynamic conditions [32]. The learned relationships in 

this study similarly reflect the complex interplay among 

ionic strength, temperature, chemical loading, and reservoir 

flow properties that governs EOR efficiency. Other studies 

in geomechanics also support the notion that machine 

learning can robustly capture coupled processes in extreme 

conditions, as shown in the prediction of hydrate-bearing 

sediment mechanical response under multifield loading [34]. 

In addition, machine learning–based determination of oil–

gas interfacial tension [35] and crude oil–nitrogen IFT [26] 

further show that fluid properties predicted by ML align well 

with laboratory observations, supporting the robustness of 

the present study’s approach to modeling fluid–fluid and 

fluid–rock interactions. 

The overall pattern exhibited by the results in this study 

strongly suggests that machine learning offers a reliable and 

scalable methodology for forecasting EOR performance 

under harsh reservoir environments. The models not only 

produce accurate predictions but also align with the 

mechanistic understanding documented in experimental and 

field-based studies across a broad cross-section of the 

literature. These convergent findings indicate that machine 

learning approaches—when trained using sufficiently 

diverse and high-resolution datasets—can directly support 

EOR design decisions, enhance field-planning accuracy, and 

reduce operational risks associated with uncertainty in 

extreme subsurface conditions. 

The present study faces several limitations that should be 

acknowledged when interpreting its findings. First, although 

the dataset is diverse and includes reservoirs with extreme 

physicochemical properties, it remains dependent on the 

range of values represented in the available data; therefore, 

predictions may be less accurate when extrapolated beyond 

the upper or lower bounds of the training variables. Second, 

despite the model’s strong performance, uncertainties 

associated with laboratory measurements, core flooding 

experiments, and field-reported recovery values may 

introduce noise into the training process. Third, the study 

relies on supervised machine learning approaches that 

require explicit target values; hence, the model’s accuracy is 

directly tied to the quality of historical EOR data, which may 

vary across different operators and laboratory conditions. 

Fourth, while the interpretability tools such as SHAP 

enhance understanding of the model’s behavior, they cannot 

fully replicate mechanistic reservoir simulations that 

incorporate spatial heterogeneity and large-scale flow 

dynamics. Lastly, the dataset does not incorporate real-time 

data streams or time-lapse operational measurements, 

limiting the model’s ability to predict dynamic changes in 

EOR performance over time. 

Future research should aim to incorporate larger, more 

diverse datasets that capture a wider range of reservoir types 

and extreme environmental conditions, enabling models to 

generalize across global EOR settings. Integrating 

laboratory-scale experiments, digital rock physics 

simulations, and high-resolution field measurements could 
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help reduce uncertainty and improve model robustness. 

Future studies could also explore hybrid physics-informed 

machine learning frameworks that combine mechanistic 

reservoir knowledge with data-driven insights. Additionally, 

the incorporation of temporal data could allow for dynamic 

prediction of EOR efficiency, enabling real-time operational 

decision-making. Researchers may also consider expanding 

the modeling framework to include optimization modules 

that recommend optimal chemical concentrations, injection 

strategies, or stimulation treatments. Finally, integrating 

uncertainty quantification techniques, such as Bayesian deep 

learning, may enhance confidence in predictions for field-

development planning. 

Practitioners can use the findings of this study to support 

EOR planning in harsh reservoir environments by applying 

machine learning models as complementary tools to 

traditional reservoir engineering workflows. These 

predictive models can help identify optimal chemical 

dosages, anticipate operational challenges, and evaluate the 

feasibility of different EOR strategies before field 

deployment. Decision-makers may also use the feature-

importance analyses to focus on the most influential 

reservoir parameters during screening and pilot design. 

Incorporating such predictive frameworks into routine 

workflow can streamline scenario evaluation, reduce trial-

and-error experimentation, and ultimately improve the 

economic and technical success rates of EOR projects. 
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