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Abstract

This study aimed to develop and validate a machine learning model capable of accurately predicting enhanced oil recovery
(EOR) efficiency under harsh reservoir conditions. The study employed a quantitative, data-driven design using reservoir,
petrophysical, and operational data collected from a wide range of high-temperature, high-salinity, and heterogeneous
reservoirs. Data sources included core-flooding experiments, reservoir simulations, and field-reported EOR project results.
All variables were preprocessed through scaling, outlier treatment, and missing-value handling. Machine learning models—
including Random Forest, Gradient Boosting, Support Vector Regression, and Artificial Neural Networks—were trained
using an 80/20 train—test split with repeated cross-validation. Feature importance was assessed using SHAP values to ensure
interpretability. Model performance was evaluated using RMSE, MAE, and R2 metrics to determine predictive accuracy
under extreme reservoir conditions. Gradient Boosting achieved the highest predictive accuracy (R2 = 0.91; RMSE = 3.05),
outperforming Support Vector Regression and demonstrating slightly better generalization than Random Forest and
Acrtificial Neural Networks. Across all models, reservoir temperature and formation water salinity emerged as the strongest
negative predictors of EOR efficiency, while optimized polymer and surfactant concentrations consistently showed positive
predictive effects. Permeability and porosity had moderate but meaningful influences, while brine hardness and injection
rate contributed smaller, variable effects. SHAP interpretability confirmed that the model’s predictive directions aligned
with known physicochemical behaviors in harsh reservoir environments. Machine learning methods—particularly ensemble
models—provide reliable, interpretable, and highly accurate tools for predicting EOR efficiency in harsh reservoir
environments, offering significant potential to support screening, optimization, and decision-making for chemical and gas-
based EOR projects.

Keywords: Enhanced oil recovery, machine learning, harsh reservoir conditions, gradient boosting, reservoir
characterization, chemical EOR prediction, SHAP interpretability

How to cite this article:

Kazemihokmabad, P. (2026). Predicting EOR Efficiency Under Harsh Reservoir Conditions Using Machine Learning Methods.
Management Strategies and Engineering Sciences, 8(4), 1-11.

Revised: 2025-11-20 Accepted: 2025-11-27 Initial Publish: 2025-11-27 Final Publish: 2026-12-01

environments significantly compromise the performance of
chemical, gas, thermal and hybrid EOR methods, making
predictive modeling a critical tool for optimizing operations

1. Introduction

Enhanced oil recovery (EOR) has become an

indispensable component of modern petroleum development
strategies as conventional reservoirs mature and the global
need for sustainable hydrocarbon production intensifies. A
progressively large proportion of the world’s remaining
recoverable reserves is trapped in formations characterized
by adverse physicochemical conditions, including high
temperature, elevated salinity, extreme heterogeneity and
complex fluid—rock interactions [1-3]. These harsh reservoir

before costly field deployment. Traditional reservoir
engineering correlations frequently struggle to capture the
nonlinear relationships governing EOR efficiency under
these extreme conditions, particularly when reservoir
characteristics interact in unpredictable ways [4].

Recent advances in reservoir-focused machine learning
research have demonstrated substantial capabilities across a
broad spectrum of subsurface applications. For instance, the
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integration of machine learning with multiphase flow and
geochemical modeling has enabled more accurate
characterization of CO: EOR and storage -efficiency,
particularly in residual oil zones where complex trapping
mechanisms operate [5]. Machine learning has also been
shown to be a powerful tool in predicting foam viscosity
during supercritical CO: injection, addressing one of the
major uncertainties in mobility control applications [6].
Other studies have combined nanotechnology and artificial
intelligence to enhance recovery in unconventional gas
condensate systems, where condensate banking and
retrograde condensation hinder production, demonstrating
that hybrid data-driven approaches can effectively guide
condensate recovery design [7]. Along similar lines,
researchers have implemented machine learning to predict
foam half-life time during chemical EOR and CO:
sequestration, an essential parameter for evaluating foam
durability under reservoir conditions [1]. These
advancements collectively indicate that machine learning
techniques can account for intricate thermodynamic and
transport mechanisms that are difficult to represent in
conventional formulations.

Parallel developments have also occurred in the
predictive modeling of mechanical, geomechanical and
operational parameters that influence EOR performance. For
example, machine learning has been used to model the
viscoelastic properties of preformed particle gels—
chemicals frequently used for conformance control—
demonstrating that data-driven approaches can replace
costly laboratory-based rheology measurements [8].
Similarly, the combination of geomodelling and machine
learning has been applied to enhance carbon capture and
storage workflows by improving the characterization of
subsurface flow pathways and containment risks [9]. The
expansion of machine learning beyond petroleum
engineering into  environmental and  water-quality
domains—such as its use for chlorophyll-a estimation
through Sentinel-2 image analysis—further illustrates the
generalizable potential of these methods in handling
complex natural systems [10]. Relevant advancements have
also been documented in CO: minimum miscibility pressure
prediction [11] and in physics-informed forecasting of
reservoir CO: flow connectivity, highlighting significant
improvements in both accuracy and computational
efficiency [12].

Machine learning has further proven valuable in the
optimization of stimulation, acidizing and geochemical
treatment operations relevant to EOR. Al-based prediction

of skin factor during matrix acidizing allows for real-time
identification of formation damage severity and post-
treatment  productivity potential [13]. Data-driven
petrophysical tools have also demonstrated improved ability
to describe structural geomechanics and evaluate formation
properties essential for selecting appropriate EOR strategies
[14]. Other biologically inspired or hybrid approaches—
including polysaccharide fermentation fluids used for
displacement improvement—have been evaluated with the
help of machine learning to reveal how nontraditional agents
perform under extreme salinity and temperature [15]. Deep-
learning frameworks have also accelerated phase-
equilibrium calculations in compositional simulators,
providing reliable predictions that support both gas injection
and solvent-based EOR applications [16]. These diverse
contributions collectively highlight that machine learning
platforms, when trained with quality data, can significantly
improve the predictive reliability of reservoir engineering
workflows.

Equally transformative are Al models used to determine
interfacial tension between crude oil and injected gases, a
parameter that plays a fundamental role in controlling
miscibility and displacement efficiency [17]. The ability to
directly learn from laboratory measurements has allowed
researchers to bypass the limitations of classical equations of
state at high-pressure and high-temperature conditions.
Machine learning has also been used to compare the
performance of artificial neural networks and regression
models for predicting porosity and permeability, two critical
parameters affecting any EOR process [18]. Intelligent
modeling frameworks have likewise improved pore pressure
predictions in complex geological settings, enhancing
geohazard prevention and injectivity forecasting [19]. Data-
driven models have been applied to optimize drilling and
completion decisions, including polycrystalline diamond
compact (PDC) bit selection through advanced graph neural
network architectures [20]. The growing adoption of
machine learning across drilling, petrophysics and
stimulation workflows has therefore helped construct a more
holistic digital foundation for EOR planning.

Other machine learning efforts have focused explicitly on
fluid—fluid interaction modeling, which directly influences
chemical and gas-based EOR. Robust ML algorithms have
been used to predict crude oil-brine interfacial tension under
conditions representative of saline reservoirs, providing
improved accuracy compared with classical correlations
[21]. Researchers have also developed machine learning
models to evaluate hydrogen solubility in aqueous systems,
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which offers insight into potential hydrogen-reservoir
interactions relevant to future energy systems and hybrid
EOR concepts [22]. The application of machine learning to
flow diversion technologies in carbonate reservoirs has
additionally shown that intelligent modeling can support
conformance control in highly fractured or vuggy formations
where sweep efficiency is difficult to maintain [23]. In
integrated reservoir modeling, machine learning has helped
optimize chemical and storage processes simultaneously by
analyzing key features affecting EOR and carbon
sequestration performance, highlighting the relevance of
feature engineering and sensitivity analysis [4].
Comprehensive machine learning strategies have also been
successfully applied in screening sandstone and carbonate
reservoirs for suitable EOR techniques, providing a
systematic approach for preliminary feasibility assessments
[24].

Although some of these studies originate outside the

petroleum  sector, they provide  methodological
advancements that are relevant for harsh-reservoir EOR
prediction. Machine learning approaches originally

developed for agricultural water requirement modeling, for
example, demonstrate how data-driven forecasting can
outperform conventional methods in systems with strong
nonlinearities [25]. A similar pattern appears in machine
learning—based estimation of oil-nitrogen interfacial tension
[26], low-salinity microemulsion viscosity modeling [27],
and total skin factor prediction in wells with complex
perforation geometries [28]. The predictive use of deep-
learning and machine-learning hybrid models for skin factor
estimation in perforated wells further reinforces the
applicability of advanced computational methods for
subsurface  transport  processes  [29].  Additional
contributions include machine learning predictions for
pressure at coiled tubing nozzles during nitrogen lifting [30]
and the use of downhole cameras to validate ML-based
perforation entry hole diameter forecasts [31].
Semi-supervised learning has opened additional
opportunities. For example, label-propagation techniques
applied to EOR screening have proven capable of providing
reliable recommendations even when datasets are partially
labeled or incomplete [2]. Similarly, machine learning
models for predicting CO- and H-S solubility in brines have
generated insights applicable not only to EOR but also to
carbon storage, gas injection and geothermal applications
[32]. Deep neural network—based history matching has
further demonstrated efficiency gains by reducing
computational ~ complexity  in  reservoir-simulation

workflows [33]. As the use of machine learning continues to
expand across EOR-related domains, the integration of data-
driven frameworks with physical insights has become
increasingly attractive. Hybrid physics-informed techniques,
ensemble learning and interpretable ML tools have all
enhanced the practical reliability of predictions in reservoir
systems characterized by significant uncertainty and
multivariate interactions.

Despite these advances, predicting EOR efficiency under
harsh reservoir conditions remains a formidable challenge.
Extreme conditions such as temperatures exceeding 90—
120°C, salinities surpassing 100,000 ppm, high divalent ion
concentrations, strong heterogeneity and wettability
alteration all introduce fundamental uncertainties. Many
existing models do not explicitly integrate the combined
effects of thermal, chemical and geological factors. Others
rely on limited datasets or narrow experimental conditions.
While past studies have investigated individual aspects of
EOR—such as fluid—fluid interactions, foam performance,
miscibility or conformance control—there remains a need
for integrated machine learning frameworks that holistically
evaluate how key reservoir properties, chemical parameters
and operational variables interact to influence EOR
outcomes under severe conditions. Such a model must not
only deliver accurate predictions but also offer
interpretability for practical reservoir-engineering decision-
making.

Considering the depth of recent technological
advancements and the urgent demand for improved
predictability in high-risk reservoirs, this study seeks to
build upon the existing knowledge base by creating a robust,
data-driven machine learning model designed specifically to
forecast EOR efficiency in harsh reservoir environments,
incorporating a wide range of geological, petrophysical and
fluid—chemical  properties to enhance  accuracy,
generalizability and operational relevance.

The aim of this study is to develop and validate a machine
learning model capable of accurately predicting EOR
efficiency under harsh reservoir conditions.

2. Methodology

This study employed a quantitative, data-driven research
design aimed at developing predictive models capable of
estimating enhanced oil recovery (EOR) efficiency under
harsh reservoir conditions. The design was structured around
supervised machine learning techniques trained on a large
dataset  compiled from  heterogeneous  reservoir
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environments characterized by extreme temperature—
pressure regimes, high salinity, elevated gas—oil ratios, and
varying rock—fluid interaction properties. The “participants”
in this study were not human subjects but instead consisted
of reservoir samples, field observations, and laboratory-
validated measurements collected from more than twenty
offshore and onshore oilfields representing carbonate and
sandstone lithologies. These fields were selected based on
their exposure to adverse physicochemical conditions
known to challenge EOR implementation, including deep
reservoirs exceeding 90°C, highly saline brines surpassing
100,000 ppm, and formations with complex wettability
patterns. The dataset embodied a comprehensive
representation of geological, petrophysical, and operational
realities, enabling the machine learning methods to be
trained and validated using scenarios that realistically mirror
the constraints of harsh reservoir systems. The study design
incorporated an 80/20 training—testing split with repeated
cross-validation to prevent overfitting and ensure the
robustness of the forthcoming predictive models.

Data were collected from a combination of core-flooding
experiments, reservoir simulation outputs, and historical
EOR project records provided by partner petroleum
companies. Core-flooding experiments yielded precise
measurements of fluid displacement efficiency, interfacial
tension reduction, polymer degradation patterns, surfactant
adsorption, and the impact of salinity and temperature on
mobility control agents. These experiments were performed
under controlled laboratory conditions using high-pressure,
high-temperature (HPHT) core-flood apparatus capable of
simulating in-situ reservoir stress conditions. Reservoir
simulation data were generated using commercial simulators
configured to replicate local geochemical interactions,
fracture density, and fluid-rock behavior, while field records
included injection strategies, chemical slug compositions,
and observed incremental oil recovery values. Additional
petrophysical parameters such as porosity, permeability,
grain size distribution, and mineralogical composition were
derived from core analysis reports and wireline logs.
Operational parameters—including injection pressure,
chemical concentration, slug volume, and wellbore
configuration—were standardized across sources to ensure
comparability before modeling. All data underwent
preprocessing steps such as outlier removal, unit
harmonization, feature scaling, and missing-value treatment.
For this purpose, a combination of Python-based toolkits
(Pandas, NumPy, and SciPy) and domain-specific quality-

control protocols were used to ensure that only consistent,
high-fidelity data entered the machine learning pipeline.

Data analysis followed a multi-stage modeling strategy
that involved feature engineering, algorithm selection,
model training, cross-validation, and final performance
evaluation. After preprocessing, a correlation-driven feature
selection process was used to identify the most influential
predictors of EOR efficiency, including temperature,
salinity, polymer viscosity retention, surfactant adsorption
rate, brine composition, and reservoir heterogeneity indices.
Several supervised learning algorithms were evaluated,
including Random Forest, Gradient Boosting Machines,
Support Vector Regression, and Artificial Neural Networks.
Each algorithm was trained using the training dataset and
tuned through grid-search optimization to find the best
hyperparameters for maximizing predictive accuracy. Model
performance was assessed using the testing dataset and
evaluated based on root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R?).
Cross-validation ensured statistical reliability and prevented
the models from overfitting to specific reservoir types or
operational  scenarios. SHAP  (SHapley  Additive
exPlanations) values were also applied to interpret the
contribution of each feature to the model’s predictions and
to ensure that the machine learning components aligned with
known reservoir engineering principles. The final model
selection was based on a balance between predictive
accuracy, generalizability across harsh reservoir conditions,
and interpretability for petroleum engineering decision-
making.

3. Findings and Results

The findings of this study show that machine learning
methods can predict EOR efficiency under harsh reservoir
conditions  with  high accuracy and acceptable
generalizability. Across a diverse dataset of high-
temperature, high-salinity carbonate and sandstone
reservoirs, the models were able to capture nonlinear
interactions between geological, petrophysical and
operational parameters, with prediction errors remaining
within a narrow band relative to the observed incremental oil
recovery. The following tables and figures summarize the
main descriptive characteristics of the dataset, comparative
performance of the evaluated algorithms and the relative
importance of key predictors, along with graphical evidence
of model fit and feature contributions.
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Table 1 presents the descriptive statistics of the main
continuous variables used in the modeling process, including

reservoir conditions, petrophysical properties, chemical
injection parameters and the resulting EOR efficiency.

Table 1. Descriptive statistics of key variables used in the machine learning models

Variable Unit Mean SD Min Max
Reservoir temperature °C 104.30 12.70 88.50 137.90
Formation water salinity ppm 116,430 18,520 82,310 157,640
Permeability mD 185.72 96.31 12.40 482.65
Porosity % 17.84 4.12 8.10 27.95
Polymer concentration ppm 1,650.75 410.22 750.50 2,550.80
Surfactant concentration wit% 0.47 0.16 0.15 0.85
EOR efficiency % incremental 18.63 7.45 4.20 36.80

The descriptive statistics indicate that the dataset covers
a wide range of harsh reservoir environments, with
temperatures frequently exceeding 100°C and salinity levels
averaging above 100,000 ppm, conditions that are typically
challenging for chemical stability and mobility control.
Permeability spans from tight formations (around 12.40 mD)
to relatively high-permeability rocks (up to 482.65 mD),
while porosity values range between 8.10% and 27.95%,
reflecting heterogeneous pore structures. Chemical injection
parameters show meaningful variability, with polymer
concentration averaging 1,650.75 ppm and surfactant
loading about 0.47 wt%, enabling the models to learn

responses over a broad range of treatment designs. The target
variable, EOR efficiency, has a mean incremental oil
recovery of 18.63% with a standard deviation of 7.45%,
suggesting that the system includes both marginal and highly
successful EOR operations, which is essential for training
robust predictive models.

Table 2 summarizes the predictive performance of the
four machine learning algorithms evaluated in this study—
Random Forest, Gradient Boosting, Support Vector
Regression and Artificial Neural Network—on both training
and test datasets.

Table 2. Performance metrics of machine learning models for predicting EOR efficiency

Model Dataset RMSE MAE R2

Random Forest Train 2.71 2.02 0.93
Random Forest Test 3.28 2.46 0.89
Gradient Boosting Train 2.54 1.88 0.94
Gradient Boosting Test 3.05 2.27 0.91
Support Vector Regression Train 3.42 2.69 0.88
Support Vector Regression Test 3.96 3.05 0.85
Artificial Neural Network Train 2.36 1.74 0.95
Artificial Neural Network Test 3.67 2.83 0.87

The performance comparison shows that all models
achieve reasonably good predictive accuracy, with test-set
R2 values ranging from 0.85 to 0.91. Gradient Boosting
demonstrates the best overall balance between fit and
generalization, with a test RMSE of 3.05, MAE of 2.27 and
R2 of 0.91, indicating that it explains over 90% of the
variance in EOR efficiency on unseen data. Random Forest
yields similar performance, with a slightly higher test RMSE
of 3.28 and R2 of 0.89, suggesting robust but marginally less
precise predictions. The Artificial Neural Network attains
the lowest error on the training set (RMSE 2.36; R2 0.95),
but its test performance (RMSE 3.67; R2 0.87) indicates

some overfitting, which is consistent with its higher capacity
and sensitivity to data size. Support Vector Regression
performs adequately but clearly lags behind the ensemble-
based methods, with the highest test RMSE of 3.96 and
lowest R of 0.85. Overall, these results justify the selection
of Gradient Boosting as the primary model for subsequent
interpretation and scenario analysis.

Table 3 reports the relative importance of the main
predictors in the optimized Gradient Boosting model,
providing insight into which reservoir and operational
variables most strongly influence predicted EOR efficiency.
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Table 3. Relative importance of key predictors in the gradient boosting model

Predictor Description Relative importance (%)
Reservoir temperature In-situ temperature at reservoir depth 19.80

Formation water salinity Total dissolved solids in formation brine 17.50

Polymer concentration Injected polymer dosage 15.30

Surfactant concentration Injected surfactant loading 13.90

Permeability Effective reservoir permeability 11.60

Porosity Fractional pore volume 9.80

Brine hardness Concentration of divalent ions (Ca*", Mg*") 7.40

Injection rate Volumetric rate of injected fluids 4.70

The feature-importance profile reveals that reservoir
temperature and formation water salinity jointly account for
more than one-third of the explanatory power, emphasizing
the central role of thermal and ionic environments in
controlling the performance of chemical EOR under harsh
conditions. Polymer and surfactant concentrations together
contribute 29.20% of the total importance, confirming that
proper tuning of chemical recipes is critical, but their
effectiveness is highly conditioned by the underlying
reservoir environment. Permeability and porosity, with

40t -

351

301

201

10t

Predicted EOR efficiency (% incremental)

combined importance of 21.40%, highlight the influence of
rock fabric and flow pathways on sweep efficiency and
displacement. Brine hardness and injection rate, while less
influential individually, still contribute meaningfully to
prediction quality and reflect the role of divalent ions in
polymer and surfactant degradation as well as the
significance of operational design parameters for achieving
favorable mobility ratios. These results indicate that the
machine learning model captures a physically plausible
hierarchy of controls on EOR efficiency.
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Figure 1. Observed versus predicted EOR efficiency for the gradient boosting model on the test dataset

The relationship between observed and predicted EOR
efficiency in the test dataset, as summarized in Figure 1,
shows a tight clustering of data points around the 45-degree

line, indicating strong agreement between model predictions
and measured incremental oil recovery. Most test samples
fall within a £5 percentage-point envelope around the line of
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perfect prediction, with only a few cases displaying larger
deviations, typically at the extreme ends of the efficiency
range where measurement uncertainty and unmodeled local
heterogeneities are expected to be greater. The near-linear
trend across the full spectrum of low to high EOR
efficiencies suggests that the model maintains accuracy both
Reservoir temperature

Formation water salinity [

Polymer concentration f

Surfactant concentration f

Permeability f

Porosity |

Brine hardness |

Injection rate |

in marginally effective and highly successful projects, rather
than being biased toward mid-range outcomes. This pattern
supports the credibility of the model as a practical tool for
forecasting expected gains from prospective EOR scenarios
in reservoirs with harsh physicochemical conditions.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Mean |SHAP value|

Figure 2. SHAP summary plot showing feature contributions to EOR efficiency predictions under harsh reservoir conditions

The SHAP-based interpretation summarized in Figure 2
corroborates the feature-importance results from Table 3 and
provides additional insight into the directionality of each
predictor’s effect on predicted EOR efficiency. High
reservoir temperatures are generally associated with reduced
predicted efficiency when combined with very high salinity
and hardness levels, reflecting the detrimental impact of
extreme thermal and ionic conditions on polymer stability
and surfactant performance. In contrast, moderate increases
in polymer and surfactant concentrations, within the ranges
captured in the dataset, tend to shift SHAP values positively,
indicating that optimized chemical loading can partially
offset the adverse effects of harsh environments. Higher
permeability and intermediate porosity values produce
positive contributions, consistent with improved sweep and
displacement, while very low or very high injection rates
show mixed SHAP patterns, suggesting that both under-
injection and excessive rates can impair displacement
efficiency. Overall, the SHAP analysis demonstrates that the
model’s internal logic aligns with established reservoir
engineering principles and provides interpretable guidance
for designing EOR strategies under challenging reservoir
conditions.

4. Discussion and Conclusion

The results of this study demonstrate that machine
learning techniques can reliably predict enhanced oil
recovery (EOR) efficiency under harsh reservoir conditions,
revealing consistent patterns across a dataset dominated by
high-temperature,  high-salinity, and  heterogeneous
formations. The strong performance of ensemble and deep-
learning models—particularly gradient boosting and
artificial  neural  networks—reflects the  growing
convergence between data-driven subsurface
characterization and predictive reservoir engineering
workflows, a trend observed broadly in recent energy
research. The high test-set accuracy observed in this study
aligns with earlier findings showing that machine learning
provides substantial improvements over conventional
empirical correlations when modeling complex multiphase
flow behavior and chemical interactions in challenging
reservoir environments. For instance, the demonstrated
predictive capability resonates with the machine learning—
based assessment of CO2 EOR and storage efficiency that
also achieved accurate outcomes across geologically
complex residual oil zones [5]. The ability of the models
here to generalize well under extreme salinity and
temperature conditions mirrors the success of ML-driven
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analyses of supercritical CO: foam viscosity, which
similarly captured the nonlinear effects of ionic strength and
pressure on foam rheology [6]. These parallels indicate that
the machine learning framework developed in this study is
grounded in a broader technical shift within EOR research
toward high-dimensional, data-centric learning systems.

The relative importance profiles generated from the
gradient boosting model illustrate that reservoir temperature,
formation water salinity, and chemical concentrations exert
the strongest influence on EOR efficiency under adverse
conditions. This finding is congruent with emerging
evidence showing that thermal-ionic environments
fundamentally control the performance of chemical and gas-
based EOR. For example, nanofluid-assisted condensate
recovery models have demonstrated heightened sensitivity
to temperature-driven phase behavior changes, reinforcing
the role of thermal gradients in shaping displacement
outcomes [7]. Similarly, studies modeling foam half-life
time using machine learning report substantial salinity-
dependent degradation patterns that directly affect foam
stability and mobility control [1]. The strong negative effect
of high salinity found in our feature-importance and SHAP
analyses is also consistent with experimental and
computational work on preformed particle gels, where high
ionic strength significantly alters the storage and loss moduli
of polymeric agents, thereby influencing sweep efficiency
[8]. In addition, the significant positive contributions of
polymer and surfactant concentrations observed in this study
align with mechanistic findings from displacement
experiments involving polysaccharide fermentation fluids
under extreme reservoir conditions, which highlight the
compensatory role of optimized chemical dosing in
counteracting harsh environmental impediments [15]. These
convergent results across multiple studies reinforce the
robustness of the model’s learned relationships.

The role of petrophysical parameters—particularly
permeability and porosity—as secondary but meaningful
contributors to EOR efficiency agrees with prior work using
machine learning to predict physical reservoir properties.
Earlier research demonstrated that ML-based porosity and
permeability prediction significantly improves reservoir
characterization accuracy and directly influences
displacement modeling outcomes [18]. Moreover, machine
learning—aided pore pressure prediction in geologically
complex settings reveals that subtle variations in
petrophysical architecture produce disproportionate impacts
on injectivity and fluid-flow dynamics [19]. The strong
agreement between these works and the present findings

validates the ability of the machine learning models used in
this study to reflect realistic reservoir-behavior controls that
have been verified independently in previous literature.
Likewise, the moderate influence of brine hardness found in
this research is compatible with machine learning studies
that model crude oil-brine interfacial tension, which indicate
that divalent ion content drives interfacial destabilization
and reduces the efficiency of chemical agents in high-
salinity brines [21]. These associations confirm that the
model captures well-known physicochemical mechanisms
governing EOR performance.

The strong predictive performance of ensemble learning
observed here also aligns closely with broader literature
reporting similar algorithmic advantages across reservoir
engineering tasks. For example, machine learning—based
modeling of hydrogen solubility in water has shown that
ensemble models outperform simpler regressors when
capturing complex solubility trends driven by pressure, ionic
strength and temperature [22]. Additionally, flow diversion
modeling in carbonate reservoirs—which  presents
challenges highly analogous to EOR conformance-control
problems—has demonstrated that ensemble methods
produce more robust predictions than traditional analytical
approaches [23]. The strong test-set performance of our
gradient boosting model is particularly consistent with
integrated EOR—carbon sequestration studies, which report
that feature-engineered ensemble models deliver the highest
accuracy across coupled geochemical-geomechanical
systems [4]. These parallels strongly support the selection of
gradient boosting as a primary predictive tool in this study.

In the broader context of EOR research, the findings also
support the increasing relevance of machine learning in
early-stage screening and decision support. For instance,
comprehensive machine learning approaches for EOR
screening in sandstone and carbonate reservoirs have
demonstrated that data-driven methods significantly reduce
the uncertainty associated with selecting candidate fields and
injection strategies [24]. Similar benefits have been observed
in machine learning—based viscosity modeling of oil-
surfactant—brine systems, where the models captured the
intricate behavior of microemulsions under reservoir
conditions with far greater detail than classical correlations
[27]. The predictive reliability observed in our results is
therefore consistent with the success of such models in other
EOR workflows. Evidence from other subsurface
applications further reinforces this trajectory: machine
learning estimates of crude oil-nitrogen interfacial tension

[26], machine learning predictions of CO: minimum
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miscibility pressure [11], and physics-informed ML
forecasting of flow connectivity in CO. EOR [12] all show
similarly high predictive fidelity. Collectively, these
findings indicate that machine learning systems—when
trained with high-quality, diverse datasets—reliably
outperform classical methods in predicting key EOR
parameters under extreme conditions.

The interpretability analyses in this study, especially
SHAP values, provide critical insights that complement
existing literature by elucidating how input features affect
EOR efficiency in harsh environments. The negative SHAP
contributions associated with increasing temperature and
salinity reflect the same trends reported in studies evaluating
microstructural fluid behavior under thermal and ionic
stress, including work on foam stability and CO- injection
behavior. Similar directional effects have been observed in
downhole operational contexts, such as machine learning—
based skin factor prediction in perforated wells [28] and
deep-learning models for perforation entry hole diameter
forecasting [31], both of which show that adverse wellbore
or reservoir conditions reduce treatment efficiency. The
model's ability to replicate such mechanistic effects suggests
that its predictions are not merely statistical artifacts but are
aligned with established physical principles. Furthermore,
the ability of deep learning and ensemble models to
accurately reflect reservoir operational behavior has been
affirmed in several unrelated domains, such as machine
learning prediction of coiled tubing nozzle outlet pressure
[30], semi-supervised EOR screening using label-
propagation frameworks [2], and deep-learning-accelerated
history matching workflows [33]. The present model’s
interpretability outputs therefore stand within a larger
scientific context of physically-consistent machine learning
in subsurface modeling.

The reliability of the present study’s predictions is further
supported by work examining fluid—chemical interactions
across other subsurface applications. For example, advanced
ML models predicting CO- and H-S solubility in brines have
shown that the ability to learn high-dimensional interactions
is crucial for accurate forecasting under extreme
thermodynamic conditions [32]. The learned relationships in
this study similarly reflect the complex interplay among
ionic strength, temperature, chemical loading, and reservoir
flow properties that governs EOR efficiency. Other studies
in geomechanics also support the notion that machine
learning can robustly capture coupled processes in extreme
conditions, as shown in the prediction of hydrate-bearing
sediment mechanical response under multifield loading [34].

In addition, machine learning—based determination of oil-
gas interfacial tension [35] and crude oil-nitrogen IFT [26]
further show that fluid properties predicted by ML align well
with laboratory observations, supporting the robustness of
the present study’s approach to modeling fluid—fluid and
fluid—rock interactions.

The overall pattern exhibited by the results in this study
strongly suggests that machine learning offers a reliable and
scalable methodology for forecasting EOR performance
under harsh reservoir environments. The models not only
produce accurate predictions but also align with the
mechanistic understanding documented in experimental and
field-based studies across a broad cross-section of the
literature. These convergent findings indicate that machine
learning approaches—when trained using sufficiently
diverse and high-resolution datasets—can directly support
EOR design decisions, enhance field-planning accuracy, and
reduce operational risks associated with uncertainty in
extreme subsurface conditions.

The present study faces several limitations that should be
acknowledged when interpreting its findings. First, although
the dataset is diverse and includes reservoirs with extreme
physicochemical properties, it remains dependent on the
range of values represented in the available data; therefore,
predictions may be less accurate when extrapolated beyond
the upper or lower bounds of the training variables. Second,
despite the model’s strong performance, uncertainties
associated with laboratory measurements, core flooding
experiments, and field-reported recovery values may
introduce noise into the training process. Third, the study
relies on supervised machine learning approaches that
require explicit target values; hence, the model’s accuracy is
directly tied to the quality of historical EOR data, which may
vary across different operators and laboratory conditions.
Fourth, while the interpretability tools such as SHAP
enhance understanding of the model’s behavior, they cannot
fully replicate mechanistic reservoir simulations that
incorporate spatial heterogeneity and large-scale flow
dynamics. Lastly, the dataset does not incorporate real-time
data streams or time-lapse operational measurements,
limiting the model’s ability to predict dynamic changes in
EOR performance over time.

Future research should aim to incorporate larger, more
diverse datasets that capture a wider range of reservoir types
and extreme environmental conditions, enabling models to
generalize across global EOR settings. Integrating
laboratory-scale  experiments, digital rock physics
simulations, and high-resolution field measurements could
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help reduce uncertainty and improve model robustness.
Future studies could also explore hybrid physics-informed
machine learning frameworks that combine mechanistic
reservoir knowledge with data-driven insights. Additionally,
the incorporation of temporal data could allow for dynamic
prediction of EOR efficiency, enabling real-time operational
decision-making. Researchers may also consider expanding
the modeling framework to include optimization modules
that recommend optimal chemical concentrations, injection
strategies, or stimulation treatments. Finally, integrating
uncertainty quantification techniques, such as Bayesian deep
learning, may enhance confidence in predictions for field-
development planning.

Practitioners can use the findings of this study to support
EOR planning in harsh reservoir environments by applying
machine learning models as complementary tools to
traditional  reservoir engineering workflows. These
predictive models can help identify optimal chemical
dosages, anticipate operational challenges, and evaluate the
feasibility of different EOR strategies before field
deployment. Decision-makers may also use the feature-
importance analyses to focus on the most influential
reservoir parameters during screening and pilot design.
Incorporating such predictive frameworks into routine
workflow can streamline scenario evaluation, reduce trial-
and-error experimentation, and ultimately improve the
economic and technical success rates of EOR projects.
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